scholarly journals Propagation of phytosanitary clones by in vitro culture

2021 ◽  
Vol 34 ◽  
pp. 03003
Author(s):  
Marcela Dubchak ◽  
Olga Sultanova ◽  
Viktor Bondarchuk

This article presents the process of accelerated reproduction of healthy clones of grapes, including the following stages: growing young shoots of the original plants of clones, introducing tops into in vitro culture, microclonal cuttings, adaptation of microplants to ex vitro culture, transplanting into cassettes with a soil substrate, transferring plants to a greenhouse for growing to the condition of vegetative seedlings and planting in a pre-propagation mother stock. For the successful implementation of each of the above operations in the SPIHVFT, a Cultural Complex has been equipped, consisting of a number of interconnected premises: a sterile box, a culture chamber and a vegetation chamber. The use of this Complex allows multiplying the required number of plants during the year, to grow vegetative seedlings by the spring of the next year and plant them in the pre-propagation “Pre-base” mother plant. After a year, grafted vegetative seedlings grown from the vines of the mother plant were used for laying the mother stock.

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 560d-560
Author(s):  
Dennis P. Stimart ◽  
John C. Mather

Cotyledons from developing embryos 6 to 8 weeks old of Liatris spicata (blazing star) were cultured on Murashige-Skoog (MS) medium containing 0, 0.4, 4.4, and 44.4 μ M benzyladenine (BA) or 0, 0.2, 2.2, and 22.2 μ M thidiazuron (TDZ) to induce adventitious shoot formation. The highest percent of cotyledons forming shoots with highest shoot counts was on medium containing 2.2 μ M TDZ. Vitreous shoots formed on medium with 22.2 μ M TDZ. Callus derived from cotyledons and cultured on medium containing 4.44 μ M BA or 2.2 μ M TDZ formed adventitious shoots with highest shoot counts on 4.44 μ M BA. Adventitious shoots derived from cotyledons and callus were rooted on MS medium with 5.0 μ Mindole-3-butyric acid, acclimatized and grown ex vitro. All micropropagated plants appeared similar to each other.


2010 ◽  
Vol 33 (3) ◽  
pp. 407-414 ◽  
Author(s):  
Andrea Nunes Vaz Pedroso ◽  
Rosmari Aparecida de Morais Lazarini ◽  
Vívian Tamaki ◽  
Catarina Carvalho Nievola

HortScience ◽  
2017 ◽  
Vol 52 (8) ◽  
pp. 1117-1121
Author(s):  
Alexandre Bosco de Oliveira ◽  
Wagner A. Vendrame ◽  
Luciana Cardoso Nogueira Londe

To investigate the effects of different cryoprotectants on germination and seedling development of jatropha (Jatropha curcas L.) seeds after cryopreservation, two experiments were performed under in vitro and ex vitro conditions. Nine treatments were used for both experiments, as follows: T1—No cryoprotectants (control); T2—glycerol 2 m (20 minutes); T3—sucrose 0.4 m (20 minutes); T4—glycerol 2 m (20 minutes) + PVS2 (10 minutes); T5—glycerol 2 m (20 minutes) + PVS2 + phloroglucinol 1% (10 minutes); T6—sucrose 0.4 m (20 minutes) + PVS2 (10 minutes); T7—sucrose 0.4 m (20 minutes) + PVS2 + phloroglucinol 1% (10 minutes); T8—glycerol 2 m (20 minutes) + sucrose 0.4 m (20 minutes) + PVS2 (10 minutes); and T9—glycerol 2 m (20 minutes) + sucrose 0.4 m (20 minutes) + PVS2 (10 minutes) + phloroglucinol 1% (10 minutes). After cryopreservation, seeds without cryoprotectants (T1) or with sucrose 0.4 m + PVS2 (T6) returned the best germination percentages after seven days of in vitro culture, 29.5% and 25%, respectively. However, they were not significantly different. For the ex vitro experiment, seed germination percentage was higher in organic substrate. These results indicate that cryopreservation of jatropha seeds can be accomplished without cryoprotectants, and faster germination is obtained in organic substrate.


1998 ◽  
Vol 123 (2) ◽  
pp. 176-181 ◽  
Author(s):  
Michio Kanechi ◽  
Masakatsu Ochi ◽  
Michiko Abe ◽  
Noboru Inagaki ◽  
Susumu Maekawa

The effects of natural ventilation and CO2 enrichment during the rooting stage on the growth and the rates of photosynthesis and transpiration of in vitro cauliflower (Brassica oleracea L.) plantlets were investigated. In vitro plantlets were established in airtight or ventilated vessels with or without CO2 supplied (≈1200 μg·L-1) through gas permeable films attached to the vessel's cap for 15 days before transplanting ex vitro. Leaves generated in vitro in ventilated vessels had a higher photosynthetic rate than those produced in airtight vessels, which lead to greater leaf expansion and shoot and root dry matter accumulation during in vitro culture and acclimatization. Enhanced photosynthesis in leaves of ventilated plantlets was positively correlated with chlorophyll content. Increasing photosynthetically active radiation from 70 to 200 μmol·m-2·s-1 enhanced the growth of in vitro plantlets under ventilated conditions but it depressed photosynthesis of the leaves grown photomixotrophically with sugar and CO2 enrichment which might be due to the feedback inhibition caused by marked accumulations of sucrose and starch. Higher CO2 levels during in vitro culture enhanced photosynthesis under photoautotrophic conditions, but inhibited it under photomixotrophic conditions. Fifteen days after transplanting ex vitro, high photosynthetic ability and stomatal resistance to transpiratory water loss of ventilated plantlets in vitro had important contributions to rooting and acclimatization. Our findings show that the ventilated culture is effective for accelerating photoautotrophic growth of plantlets by increasing photosynthesis, suggesting that, especially for plantlets growing in vitro without sugar, CO2 enrichment may be necessary to enhance photosynthetic ability.


Rodriguésia ◽  
2021 ◽  
Vol 72 ◽  
Author(s):  
Márcio Hisayuki Sasamori ◽  
Delio Endres Júnior ◽  
Annette Droste

Abstract Cattleya cernua is an epiphytic orchid native of the Atlantic Forest, Cerrado, Caatinga and Pampa. Aiming at the development of an in vitro conservation technology, plants were micropropagated through asymbiotic culture and the influence of different concentrations of sucrose (10, 30, 60 and 90 g L-1) and macronutrients (25, 50 and 100% MS) on survival and development was evaluated. Plant survival ranged between 47 and 100%. The interaction between macronutrients and sucrose influenced plant development. The aerial system of the plants was higher in 100% MS medium combined with 30 or 60 g L-1 of sucrose. The number of roots was higher with reduced macronutrients, combined with 30 or 60 g L-1 of sucrose. The length of the largest root was also higher when macronutrients were reduced but combined with 10 or 30 g L-1 of sucrose. The greatest mass was recorded when 30 g L-1 of sucrose was added to the three salt concentrations. Chlorophyll did not differ between plants grown with 30 or 90 g L-1 of sucrose. We recommend cultivating the plants in MS medium with 30 g L-1 of sucrose for better development of the aerial system. C. cernua can be asymbiotically micropropagated, facilitating ex vitro conservation strategies.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1665
Author(s):  
Yongfeng Hong ◽  
Xia Huang ◽  
Chunmei Li ◽  
Xiaoxian Ruan ◽  
Zhen Wang ◽  
...  

Mikania cordata, the only native congener of the invasive weed Mikania micrantha in China, is an ideal species for comparative study to reveal the invasion mechanism. However, its genome resources are lagging far behind its congener, which limits the comparative genomic analysis. Our goal is to characterize the genome of M. cordata by next-generation sequencing and propose a scheme for long-read genome sequencing. Previous studies have shown that the genomic resources of the host plant would be affected by the endophytic microbial DNA. An aseptic sample of M. cordata will ensure the proper genome in downstream analysis. Because endophytes are ubiquitous in the greenhouse-grown M. cordata, the in vitro culture with cefotaxime or timentin treatment was undertaken to obtain the aseptic plantlets. The in vivo mother plant and in vitro plantlets were used to survey the genome. The microbial contamination in M. cordata was recognized by blast search and eliminated from the raw reads. The decontaminated sequencing reads were used to predict the genome size, heterozygosity, and repetitive rate. The in vivo plant was so contaminated that microbes occupied substantial sequencing resources and misled the scaffold assembly. Compared with cefotaxime, treatment with timentin performed better in cultivating robust in vitro plantlets. The survey result from the in vitro plantlets was more accurate due to low levels of contamination. The genome size was estimated to be 1.80 Gb with 0.50% heterozygosity and 78.35% repetitive rate. Additionally, 289,831 SSRs were identified in the genome. The genome is heavily contaminated and repetitive; therefore, the in vitro culture technique and long-read sequencing technology are recommended to generate a high-quality and highly contiguous genome.


Sign in / Sign up

Export Citation Format

Share Document