scholarly journals Genome Survey Sequencing of In Vivo Mother Plant and In Vitro Plantlets of Mikania cordata

Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1665
Author(s):  
Yongfeng Hong ◽  
Xia Huang ◽  
Chunmei Li ◽  
Xiaoxian Ruan ◽  
Zhen Wang ◽  
...  

Mikania cordata, the only native congener of the invasive weed Mikania micrantha in China, is an ideal species for comparative study to reveal the invasion mechanism. However, its genome resources are lagging far behind its congener, which limits the comparative genomic analysis. Our goal is to characterize the genome of M. cordata by next-generation sequencing and propose a scheme for long-read genome sequencing. Previous studies have shown that the genomic resources of the host plant would be affected by the endophytic microbial DNA. An aseptic sample of M. cordata will ensure the proper genome in downstream analysis. Because endophytes are ubiquitous in the greenhouse-grown M. cordata, the in vitro culture with cefotaxime or timentin treatment was undertaken to obtain the aseptic plantlets. The in vivo mother plant and in vitro plantlets were used to survey the genome. The microbial contamination in M. cordata was recognized by blast search and eliminated from the raw reads. The decontaminated sequencing reads were used to predict the genome size, heterozygosity, and repetitive rate. The in vivo plant was so contaminated that microbes occupied substantial sequencing resources and misled the scaffold assembly. Compared with cefotaxime, treatment with timentin performed better in cultivating robust in vitro plantlets. The survey result from the in vitro plantlets was more accurate due to low levels of contamination. The genome size was estimated to be 1.80 Gb with 0.50% heterozygosity and 78.35% repetitive rate. Additionally, 289,831 SSRs were identified in the genome. The genome is heavily contaminated and repetitive; therefore, the in vitro culture technique and long-read sequencing technology are recommended to generate a high-quality and highly contiguous genome.

1990 ◽  
Vol 18 (1_part_1) ◽  
pp. 243-250
Author(s):  
Dag Jenssen ◽  
Lennart Romert

To understand the cause of the biological effects of xenobiotic metabolism in mammals, investigators have traditionally performed animal experiments by comparing the results of biochemical methods, such as measurement of enzyme activity analysis of the metabolites produced, with the observed toxicological effect. This article deals with in vitro methods for genotoxicity combined with drug metabolising preparations at the organelle, cell or organ levels, as exemplified by microsome preparations, isolated cells/cell lines and organ perfusion systems, respectively. The advantage of some of these methods for studying metabolism-mediated mutagenicity is that the measured endpoint reflects not only the bioactivating phase I reactions, but also the detoxifying phase II reactions, and the transfer of the non-conjugated reactive metabolites to other cells and their ability to cause mutations in these cells. In vivo, all these events are important factors in the initiation of cancer. A mechanistic advantage of the methods for metabolism-mediated mutagenicity in vitro is that the relevance of the different steps in metabolism for the mutational events can seldom be investigated in an in vivo assay. Furthermore, human studies can easily be performed using the co-culture technique with isolated human cells or cell lines.


2021 ◽  
Vol 22 (13) ◽  
pp. 6663
Author(s):  
Maurycy Jankowski ◽  
Mariusz Kaczmarek ◽  
Grzegorz Wąsiatycz ◽  
Claudia Dompe ◽  
Paul Mozdziak ◽  
...  

Next-generation sequencing (RNAseq) analysis of gene expression changes during the long-term in vitro culture and osteogenic differentiation of ASCs remains to be important, as the analysis provides important clues toward employing stem cells as a therapeutic intervention. In this study, the cells were isolated from adipose tissue obtained during routine surgical procedures and subjected to 14-day in vitro culture and differentiation. The mRNA transcript levels were evaluated using the Illumina platform, resulting in the detection of 19,856 gene transcripts. The most differentially expressed genes (fold change >|2|, adjusted p value < 0.05), between day 1, day 14 and differentiated cell cultures were extracted and subjected to bioinformatical analysis based on the R programming language. The results of this study provide molecular insight into the processes that occur during long-term in vitro culture and osteogenic differentiation of ASCs, allowing the re-evaluation of the roles of some genes in MSC progression towards a range of lineages. The results improve the knowledge of the molecular mechanisms associated with long-term in vitro culture and differentiation of ASCs, as well as providing a point of reference for potential in vivo and clinical studies regarding these cells’ application in regenerative medicine.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 318
Author(s):  
Bernardo Sachman-Ruiz ◽  
Luis Lozano ◽  
José J. Lira ◽  
Grecia Martínez ◽  
Carmen Rojas ◽  
...  

Cattle babesiosis is a socio-economically important tick-borne disease caused by Apicomplexa protozoa of the genus Babesia that are obligate intraerythrocytic parasites. The pathogenicity of Babesia parasites for cattle is determined by the interaction with the host immune system and the presence of the parasite’s virulence genes. A Babesia bigemina strain that has been maintained under a microaerophilic stationary phase in in vitro culture conditions for several years in the laboratory lost virulence for the bovine host and the capacity for being transmitted by the tick vector. In this study, we compared the virulome of the in vitro culture attenuated Babesia bigemina strain (S) and the virulent tick transmitted parental Mexican B. bigemina strain (M). Preliminary results obtained by using the Basic Local Alignment Search Tool (BLAST) showed that out of 27 virulence genes described and analyzed in the B. bigemina virulent tick transmitted strain, only five were fully identified in the attenuated laboratory strain. In all cases, the identity and coverture of the identified genes of the wildtype strain were higher than those of the laboratory strain. This finding is putatively associated with the continuous partial loss of virulence genes in the laboratory strain after several passages of the parasite population under optimal in vitro growth conditions. The loss of virulence factors might be reflected in the absence of symptoms of the disease in cattle inoculated with the attenuated strain despite the presence of infection in the bovine host cells.


1994 ◽  
Vol 35 (1-2) ◽  
pp. 81-89 ◽  
Author(s):  
P.A. Pugh ◽  
J.G. Thompson ◽  
K. Logan ◽  
H.R. Tervit

2016 ◽  
Vol 40 ◽  
pp. 603-608
Author(s):  
Ayşe Merve KÖSE ◽  
Tevfik TEKELİ
Keyword(s):  

Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 659-659
Author(s):  
Kevin A. Goncalves ◽  
Megan D. Hoban ◽  
Jennifer L. Proctor ◽  
Hillary L. Adams ◽  
Sharon L. Hyzy ◽  
...  

Abstract Background. The ability to expand human hematopoietic stem cells (HSCs) has the potential to improve outcomes in HSC transplantation and increase the dose of gene-modified HSCs. While many approaches have been reported to expand HSCs, a direct comparison of the various methods to expand transplantable HSCs has not been published and clinical outcome data for the various methods is incomplete. In the present study, we compared several small molecule approaches reported to expand human HSCs including HDAC inhibitors, the aryl hydrocarbon antagonist, SR1, and UM171, a small molecule with unknown mechanism, for the ability to expand phenotypic HSC during in vitro culture and to expand cells that engraft NSG mice. Although all strategies increased the number of phenotypic HSC (CD34+CD90+CD45RA-) in vitro, SR1 was the most effective method to increase the number of NOD-SCID engrafting cells. Importantly, we found that HDAC inhibitors and UM171 upregulated phenotypic stem cell markers on downstream progenitors, suggesting that these compounds do not expand true HSCs. Methods. Small-molecules, SR1, HDAC inhibitors (BG45, CAY10398, CAY10433, CAY10603, Entinostat, HC Toxin, LMK235, PCI-34051, Pyroxamide, Romidepsin, SAHA, Scriptaid, TMP269, Trichostatin A, or Valproic Acid) and UM171 were titrated and then evaluated at their optimal concentrations in the presence of cytokines (TPO, SCF, FLT3L, and IL6) for the ability to expand human mobilized peripheral blood (mPB)-derived CD34+ cells ex vivo . Immunophenotype and cell numbers were assessed by flow cytometry following a 7-day expansion assay in 10-point dose-response (10 µM to 0.5 nM). HSC function was evaluated by enumeration of colony forming units in methylcellulose and a subset of the compounds were evaluated by transplanting expanded cells into sub-lethally irradiated NSG mice to assess engraftment potential in vivo . All cells expanded with compounds were compared to uncultured or vehicle-cultured cells. Results. Following 7 days of expansion, SR1 (5-fold), UM171 (4-fold), or HDAC inhibitors (&gt;3-35-fold) resulted in an increase in CD34+CD90+CD45RA- number relative to cells cultured with cytokines alone; however, only SR1 (18-fold) and UM171 (8-fold) demonstrated enhanced engraftment in NSG mice. Interestingly, while HDAC inhibitors and UM171 gave the most robust increase in the number and frequency of CD34+CD90+CD45RA- cells during in vitro culture, these methods were inferior to SR1 at increasing NSG engrafting cells. The increase in CD34+CD90+CD45RA- cells observed during in vitro culture suggested that these compounds may be generating a false phenotype by upregulating CD90 and down-regulating CD45RA on progenitors that were originally CD34+CD90-CD45RA+. We tested this hypothesis by sorting CD34+CD90-CD45RA+ cells and culturing these with the various compounds. These experiments confirmed that both HDAC inhibitors (33-100 fold) and UM171 (28-fold) led to upregulation of CD90 on CD34+CD90-CD45RA+ cells after 4 days in culture. Since approximately 90% of the starting CD34+ cells were CD90-, these data suggest that most of the CD34+CD90+CD45RA- cells in cultures with HDAC inhibitors and UM171 arise from upregulation of CD90 rather than expansion of true CD34+CD90+CD45RA- cells and may explain the disconnect between in vitro HSC phenotype and NSG engraftment in vivo . This was further confirmed by evaluation of colony forming unit frequency of CD34+CD90-CD45RA+ cells after culture with compounds. Conclusions. We have showed that AHR antagonism is optimal for expanding functional human HSCs using the NSG engraftment model. We also demonstrated that UM171 and HDAC inhibitors upregulate phenotypic HSC markers on downstream progenitors. This could explain the discrepancy between impressive in vitro phenotypic expansion and insufficient functional activity in the NSG mouse model. Therefore, these data suggest caution when interpreting in vitro expansion phenotypes without confirmatory functional transplantation data, especially as these approaches move into clinical trials in patients. Disclosures Goncalves: Magenta Therapeutics: Employment, Equity Ownership. Hoban: Magenta Therapeutics: Employment, Equity Ownership. Proctor: Magenta Therapeutics: Employment, Equity Ownership. Adams: Magenta Therapeutics: Employment, Equity Ownership. Hyzy: Magenta Therapeutics: Employment, Equity Ownership. Boitano: Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Cooke: Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Mark F Sabbagh ◽  
Jeremy Nathans

Vascular endothelial cells (ECs) derived from the central nervous system (CNS) variably lose their unique barrier properties during in vitro culture, hindering the development of robust assays for blood-brain barrier (BBB) function, including drug permeability and extrusion assays. In previous work (Sabbagh et al., 2018) we characterized transcriptional and accessible chromatin landscapes of acutely isolated mouse CNS ECs. In this report, we compare transcriptional and accessible chromatin landscapes of acutely isolated mouse CNS ECs versus mouse CNS ECs in short-term in vitro culture. We observe that standard culture conditions are associated with a rapid and selective loss of BBB transcripts and chromatin features, as well as a greatly reduced level of beta-catenin signaling. Interestingly, forced expression of a stabilized derivative of beta-catenin, which in vivo leads to a partial conversion of non-BBB CNS ECs to a BBB-like state, has little or no effect on gene expression or chromatin accessibility in vitro.


2020 ◽  
Author(s):  
Alexander Goikoetxea ◽  
Erin L Damsteegt ◽  
Erica V Todd ◽  
Andrew McNaughton ◽  
Neil J Gemmell ◽  
...  

AbstractMany teleost fishes undergo natural sex change, and elucidating the physiological and molecular controls of this process offers unique opportunities not only to develop methods of controlling sex in aquaculture settings, but to better understand vertebrate sexual development more broadly. Induction of sex change in some sequentially hermaphroditic or gonochoristic fish can be achieved in vivo through social manipulation, inhibition of aromatase activity, and steroid treatment. However, the induction of sex change in vitro has been largely unexplored. In this study, we established an in vitro culture system for ovarian explants in serum-free medium for a model sequential hermaphrodite, the New Zealand spotty wrasse (Notolabrus celidotus). This culture technique enabled evaluating the effect of various treatments with 17β-estradiol (E2), 11-ketotestosterone (11KT) or cortisol (CORT) on spotty wrasse ovarian architecture for 21 days. A quantitative approach to measuring the degree of ovarian atresia within histological images was also developed, using pixel-based machine learning software. Ovarian atresia likely due to culture was observed across all treatments including no-hormone controls, but was minimised with treatment of at least 10 ng/mL E2. Neither 11KT nor CORT administration induced proliferation of spermatogonia (i.e. sex change) in the cultured ovaries indicating culture beyond 21 days may be needed to induce sex change in vitro. The in vitro gonadal culture and analysis systems established here enable future studies investigating the paracrine role of sex steroids, glucocorticoids and a variety of other factors during gonadal sex change in fish.


2021 ◽  
Vol 31 (1) ◽  
pp. 51-60
Author(s):  
RI Oyediran ◽  
JO Afolabi ◽  
DB Olomola ◽  
FO Akanni

Nauclea diderrichii is a tree species of economic importance. However, its plantation establishment is limited by inadequate seedling production. Hence, there is ample scope of tissue culture for its mass propagation. Its in vitro plantlets development as affected by media strengths indicated that 100 % seed germination was obtained in full MS basal medium while the least (3.35 %) was from quarter-strength at 8 Weeks after inoculation (WAI). The effects of BAP and NAA assessed on the growth of its sub-cultured plantlets showed that highest number of leaves (17) and adventitious shoots (3) were obtained from MS basal medium supplemented with 0.1 mg/l BAP only. Whereas, highest shoot length (3.61 cm) and average number of roots (5/plantlet) were obtained from the same medium without hormone(s) at 8 WAI. Further sub-culturing into MS with 0.05 mg/l NAA resulted into plantlets having optimum shoot and massive root growth ready for acclimatization in 6 WAI. The plantlets were successfully acclimatized using coconuthusk/ topsoil mixture with 90 % survival. Plant Tissue Cult. & Biotech. 31(1): 51-60, 2021 (June)


Sign in / Sign up

Export Citation Format

Share Document