scholarly journals Use of a water treatment sludge in a sewage sludge dewatering process

2018 ◽  
Vol 30 ◽  
pp. 02006 ◽  
Author(s):  
Justyna Górka ◽  
Małgorzata Cimochowicz-Rybicka ◽  
Małgorzata Kryłów

The objective of the research study was to determine whether a sewage sludge conditioning had any impact on sludge dewaterability. As a conditioning agent a water treatment sludge was used, which was mixed with a sewage sludge before a digestion process. The capillary suction time (CST) and the specific filtration resistance (SRF) were the measures used to determine the effects of a water sludge addition on a dewatering process. Based on the CST curves the water sludge dose of 0.3 g total volatile solids (TVS) per 1.0 g TVS of a sewage sludge was selected. Once the water treatment sludge dose was accepted, disintegration of the water treatment sludge was performed and its dewaterability was determined. The studies have shown that sludge dewaterability was much better after its conditioning with a water sludge as well as after disintegration and conditioning, if comparing to sludge with no conditioning. Nevertheless, these findings are of preliminary nature and future studies will be needed to investigate this topic.

2018 ◽  
Vol 15 (4) ◽  
pp. 975-980 ◽  
Author(s):  
Ramtin Mazaheri ◽  
Mostafa Tizghadam Ghazani ◽  
Abolghasem Alighardashi

In the present study, an active component of Moringa peregrine (MP) was used in comparison with ferric chloride (FeCl₃) for the conditioning of water treatment sludge. The comparison was based on dewatering characteristics of the conditioned sludge determined by capillary suction time (CST), specific resistance to filtration (SRF), tests of time of filtration (TTF) and sludge cake moisture content. The results indicated that MP showed relatively comparable conditioning effect as ferric chloride. Sludge conditioned with ferric chloride, showed better results than MP. According to CST, SRF and tests of time of filtration (TTF) and sludge cake moisture content results, optimum dose for MP, and ferric chloride was 100 ml/l. From the results of the study it could be concluded that MP alone could be effectively used and replace ferric chloride for dewatering of water treatment sludge.


2016 ◽  
Vol 4 (1) ◽  
pp. 746-752 ◽  
Author(s):  
Jun Li ◽  
Liu Liu ◽  
Jun Liu ◽  
Ting Ma ◽  
Ailan Yan ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Jie Wang ◽  
Kankan Shang ◽  
Liangjun Da ◽  
Xingguo Liu ◽  
Yongjing Zhao ◽  
...  

This study investigated the synergetic effect of the combined calcium peroxide (CaO2) and microwave (MW) treatment on waste active sludge dewatering properties and organic contaminants’ removal. The optimal sludge dewaterability was obtained at CaO2 (20 mg/gVSS)/MW (70°C), and the capillary suction time decreased by 52% compared with raw sludge. Further investigation indicated that total extracellular polymeric substances (EPS), tightly bound EPS, total protein, and protein present in tightly bound EPS were closely correlated with sludge dewaterability. Tryptophan, aromatic protein–like substances and humic acid–like substances were the key compounds that affect sludge dewaterability. The charge neutralization and bridge effect of cation ions were strengthened when combined with MW irradiation. In addition, it was revealed that MW facilitated CaO2 to produce more hydroxyl and superoxide anion radicals. This study confirmed CaO2/MW to be an effective way to improve sludge dewatering and remove organic pollutants from sludge.


2021 ◽  
Author(s):  
Neng Tao ◽  
Xiu Wu ◽  
Feng Zhang ◽  
Zilei Pi ◽  
Jiaqi Wen ◽  
...  

Abstract Bench- and pilot-scale successive multi-batch trials were conducted to investigate the performance and sustainability of fungal conditioning with Penicillium simplicissimum NJ12 for improving sludge dewatering. The dominant factors affecting the sludge dewaterability improvement by P. simplicissimum NJ12 were also identified. Fungal treatment with P. simplicissimum NJ12 at a volume fraction of 5% of the inoculum greatly improved the sludge dewaterability. This improvement was characterized by sharp decreases in the specific resistance to filtration from 1.97 × 1013 to 3.52 × 1011 m/kg and capillary suction time from 32 to 12 s within 3 days. Stepwise multiple linear regression analysis showed that a marked decrease (58.8%) in the protein content in slime extracellular polymeric substances and an increase in the zeta potential of the sludge (from − 35 to − 10 mV) were the most important factors that improved the dewaterability of sludge after fungal treatment. Consecutive processes of fungal treatment could be realized by recirculating the fungal-treated sludge with a recycling rate of 1:2 (Vbiotreated sludge/Vtotal sludge). The treatment effectiveness was maintained only over three successive cycles, but replenishment with fresh P. simplicissimum NJ12 would be provided periodically at set batch intervals. These findings demonstrate the possibility of P. simplicissimum NJ12-assisted fungal treatment for enhancing sludge dewatering.


2001 ◽  
Vol 44 (10) ◽  
pp. 321-325 ◽  
Author(s):  
C.F. Lin ◽  
Y. Shien

Sludge dewatering is preceded by a conditioning operation to enhance water removal efficiency. In the conditioning operation, chemical coagulants or polymers are added to promote sludge particle aggregation for easier dewatering. In this study, an alternative conditioning method for sludge thermal treatment at temperatures up to 80°C was extensively investigated. Dewatering characteristics such as sludge capillary suction time and specific resistance to filtration, sludge viscosity and concentration of solid cakes were examined thoroughly. A good correlation between capillary suction time and specific resistance to filtration was established for sludges from water treatment, but not for biological sludge. Cationic polymer exhibits the best enhancement on sludge moisture removal. The sludge rheogram varies from 60 to 5 cP as temperature changes from 20 to 80°C for sludges from water treatment plant. The dewatering ability of sludge can be greatly enhanced by thermal treatment in conjunction with the use of polymers.


2021 ◽  
Vol 2124 (1) ◽  
pp. 012002
Author(s):  
S A Shakhov ◽  
N Yu Nikolaev

Abstract Industrial wastes are widely involved in the building ceramic production. Sewage sludge ashes are promising secondary sources for building ceramics production. However, sewage sludge ash application for building ceramic materials production is limited by unsatisfactory molding properties. According to modern concepts, coagulation structure formation processes can be controlled by adjusting ceramic mass compositions by highly dispersed modifying additives. In this study, the drinking water treatment sludge filtrate generated in pumping and filtering stations was used as a highly dispersed additive. The purpose of study was to assess the drinking water treatment sludge filtrate effect on rheological properties of ash-clay molding mixtures. Using the photo sedimentation analysis, X-ray phase analysis, calorimeter method and parallel-shifting plate plastometry the drinking water treatment sludge filtrate additive effect on rheological properties of ash-clay mixtures was established. It was found that ash-clay mixture modification with the drinking water treatment sludge filtrate promotes a slow elastic deformations percentage increase from 3-17% to 7-34%. Apparently, this is due to the drinking water treatment sludge filtrate highly dispersed particles adsorption on coarse ash and clay particles that promotes the growth of their hydrophilic properties. Ash-clay mixtures molding properties improvement makes it possible to increase the ceramic blanks density.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5079
Author(s):  
Beata Bień ◽  
Jurand D. Bień

The paper presents the impact of different methods of sewage sludge conditioning on the improvement of sludge dewatering during pressure filtration processes. The following conditioning methods were tested for sludge preparation: sonication, addition of organic and inorganic chemicals (Zetag 8180, PIX 113 and the combined action of both substances). The research covered: physical and chemical analysis of sewage sludge, measurement of capillary suction time as an indicator of sludge dewaterability, some technical parameters of sludge pressure filtration process and the analysis of filtrate to assess the degree of contamination. The results of the research showed that the final water content of the prepared sludge decreased, while the specific filtration resistance increased. Among the tested methods the best results of sludge dewatering effects were obtained for sonicated sludge and its preparation with inorganic coagulant PIX 113. The combined effect of sonication with the addition of chemicals Zetag 8180 and PIX113 to sludge allowed for the reduction of organic substances, ammonium nitrogen and phosphates in filtrate after sludge dewatering.


Sign in / Sign up

Export Citation Format

Share Document