scholarly journals Possibilities of using aluminate cements in high-rise construction

2018 ◽  
Vol 33 ◽  
pp. 02056
Author(s):  
Maria Kaddo

The article describes preferable ways of usage of alternative binders for high-rise construction based on aluminate cements. Possible areas of rational use of aluminate cements with the purpose of increasing the service life of materials and the adequacy of the durability of materials with the required durability of the building are analyzed. The results of the structure, shrinkage and physical and mechanical properties of concrete obtained from dry mixes on the base of aluminate cements for self-leveling floors are presented. To study the shrinkage mechanism of curing binders and to evaluate the role of evaporation of water in the development of shrinkage was undertaken experiment with simple unfilled systems: gypsum binder, portland cement and «corrosion resistant high alumina cement + gypsum». Principle possibility of binder with compensated shrinkage based on aluminate cement, gypsum and modern superplasticizers was defined, as well as cracking resistance and corrosion resistance provide durability of the composition.

Cerâmica ◽  
2010 ◽  
Vol 56 (340) ◽  
pp. 411-421 ◽  
Author(s):  
E. A. Firoozjaei ◽  
A. Saidi ◽  
A. Monshi ◽  
P. Koshy

The bonding system in low cement castables is achieved by the use of calcium aluminate cement, microsilica and reactive alumina. The lime/silica ratio critically impacts the liquid phase formation at high temperatures and subsequently the corrosion resistance and the mechanical and physical properties of the refractory. In the current study, the effects of microsilica and cement contents on the corrosion resistance and the physical and mechanical properties of Andalusite Low Cement Castables (LCCs) refractories were investigated. Alcoa Cup test was used to evaluate the corrosion resistance of the castables at 850 ºC and 1160 ºC. The study showed that an increase in the microsilica/cement ratio improves the physical and mechanical properties of the castable, but at the expense of the corrosion resistance. When a fixed amount of BaSO4 was added to the base refractory material, barium celsian along with glassy phase formation was observed to increase with the increase in the microsilica/cement ratio in the refractory. The presence of the glassy phases was noted to lower the positive effect of Ba-celsian formation on improving the corrosion resistance of the refractory. The observed results were validated using thermodynamic calculations which indicated that Ba-celsian phase was more resistant than Ca-anorthite for applications involving contact with molten aluminum.


2018 ◽  
Vol 4 (23) ◽  
pp. 28
Author(s):  
V. Tokarchuk ◽  
Y. Kovalenko

The corrosion resistance of dry building mixtures on the basis of Portland cement of general construction purpose was considered. The choice of types of dry building mixtures for research was substantiated. Their physical and mechanical properties and corrosion resistance in the conditions of contact with various aggressive environments have been studied. It has been established that the corrosion resistance of dry building mixtures depends not only on the properties of the original cement, but also on the composition of the mixtures themselves. Significant impact on the stability index has the appearance of an aggressive solution. An increased corrosion resistance of the mixture which contains a polymeric component in its composition, had been noted.Key words: dry building mixtures, portland cement, stucco, tile adhesive, corrosion resistance 


Alloy Digest ◽  
1983 ◽  
Vol 32 (3) ◽  

Abstract BRUSH Alloy 3 offers the highest electrical and thermal conductivity of any beryllium-copper alloy. It possesses an excellent combination of moderate strength, good corrosion resistance and good resistance to moderately elevated temperatures. Because of its unique physical and mechanical properties, Brush Alloy 3 finds widespread use in welding applications (RWMA Class 3), current-carrying springs, switch and instrument parts and similar components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, joining, and surface treatment. Filing Code: Cu-454. Producer or source: Brush Wellman Inc..


Alloy Digest ◽  
1999 ◽  
Vol 48 (10) ◽  

Abstract Kaiser Aluminum alloy KA62 (Tennalum alloy KA62) is a lead-free alternative to 6262. It offers good machinability and corrosion resistance and displays good acceptance of coatings (anodize response). It can be used in place of 6262 because its physical and mechanical properties are equivalent to those of 6262 (see Alloy Digest Al-361, September 1999). This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength. It also includes information on corrosion resistance as well as forming, heat treating, machining, and surface treatment. Filing Code: AL-362. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Alloy Digest ◽  
1993 ◽  
Vol 42 (11) ◽  

Abstract REMANIT 4439 is a highly corrosion resistant steel with low carbon content, an addition of nitrogen to enhance both mechanical properties and corrosion resistance, and higher molybdenum than most stainless steels to resist pitting and crevice corrosion in chloride media. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-556. Producer or source: Thyssen Stahl AG.


Alloy Digest ◽  
2008 ◽  
Vol 57 (12) ◽  

Abstract Ferrium S53 was developed for use as a structural corrosion resistant steel for aircraft landing gear. S53 has a corrosion resistance equivalent to 440C, strength equivalent to or better than 300M (AMS 6257A) and SAE 4340 (see Mechanical Properties), optimum microstructure features for maximum fatigue resistance, and a surface hardenability equal to or greater than 67 HRC for wear and fatigue. This datasheet is an update to Alloy Digest SS-942 and SS-1003. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating and machining. Filing Code: SA-589. Producer or source: QuesTek Innovations, LLC.


2020 ◽  
Vol 38 (3) ◽  
pp. 273-286 ◽  
Author(s):  
Cristina Garcia-Cabezon ◽  
Celia Garcia-Hernandez ◽  
Maria L. Rodriguez-Mendez ◽  
Gemma Herranz ◽  
Fernando Martin-Pedrosa

AbstractMicrostructural changes that result in relevant improvements in mechanical properties and electrochemical behavior can be induced using different sintering conditions of ASTM F75 cobalt alloys during their processing using powder metallurgy technique. It has been observed that the increase in carbon and nitrogen content improves corrosion resistance and mechanical properties as long as the precipitation of carbides and nitrides is avoided, thanks to the use of rapid cooling in water after the sintering stage. In addition, the reduction of the particle size of the powder improves hardness and resistance to corrosion in both acid medium with chlorides and phosphate-buffered medium that simulates the physiological conditions for its use as a biomaterial. These results lead to increased knowledge of the role of carbon and nitrogen content in the behavior displayed by the different alloys studied.


Sign in / Sign up

Export Citation Format

Share Document