scholarly journals Stability analysis of the Kosciuszko Mound using terrestrial laser scanner and numerical modelling

2018 ◽  
Vol 66 ◽  
pp. 01018
Author(s):  
Elżbieta Pilecka ◽  
Karolina Tomaszkiewicz

Landslides which form in anthropogenic soils are complicated from a geological engineering and geotechnical point of view. Each case requires a detailed investigation and the selection of effective reinforcements is a difficult project issue. The study presents the problem of the stability analysis of landslides occurring in the anthropogenic soils of the Kosciuszko Mound in Cracow. The previously performed protections are discussed to highlight their ineffectiveness and the current technical condition of the mound is also presented. By overlapping the results of displacement measurements made with a terrestrial laser scanner, a differential model of the terrain was created which made it possible to determine the size and direction of the deformation of the slopes of the mound and the tendencies for the development of landslide movements in this area. A cross-section, selected on the basis of the model, was numerically analysed using the finite element method (FEM) in the Midas GTS NX program. As a result of the analysis, the values of the displacements and strains occurring in the Mound were calculated. On the basis of the value of the safety factor obtained, it was also possible to assess the risk of landslide movements.

2019 ◽  
Vol 18 (3) ◽  
pp. 477-494 ◽  
Author(s):  
Pekka Ruponen ◽  
Petri Pennanen ◽  
Teemu Manderbacka

Abstract A decision support system with damage stability analysis has been recognized as an important tool for passenger ships. Various software applications have been developed and taken into use over the years, without a direct link to any compelling requirement, set forth in the international regulatory framework. After the Costa Concordia accident, new regulations have been established, setting minimum requirements for a decision support system, as an extension to a loading computer. Yet, more advanced systems have been developed recently, aiming at providing valuable additional information on the predicted development of the stability of the damaged ship. This paper presents these alternative decision support systems with damage stability analysis methods for flooding emergencies on passenger ships. The technical background, usability, and usefulness of the various approaches are compared and discussed, taking into account the important statutory approval point of view. In addition, practical examples, including past accidents, are presented and discussed.


2019 ◽  
Vol 284 ◽  
pp. 08007
Author(s):  
Joanna A. Pawłowicz

3D terrestrial laser scanning (TLS) is a modern measurement technique which enables to obtain a large amount of data in short time. The gathered data is very detailed, thus the scope of its use is vast. Therefore scanners other measurement devices which results in considerable acceleration of stock-taking work. This approach enables to prepare a documentation of a building or to make an assessment of its technical condition using only a 3D cloud of points. Additionally, flexibility of data and advanced computer programmes make it possible to use such data in many sectors, not only in the building trade. The paper shows the issue of using a 3D terrestrial laser scanner ant the TLS (Terrestrial Laser Scanning) technique for identification and measurement of damaged elements on the example of a historical sacral building.


2019 ◽  
Vol 9 (22) ◽  
pp. 4877 ◽  
Author(s):  
Patryk Bohatyrewicz ◽  
Janusz Płowucha ◽  
Jan Subocz

In electric power systems, health index algorithms are mostly used for evaluation of the transformer population. In this method, some assessment criteria are insensitive when it comes to judging the technical state of the edges of the age spectrum. This paper presents a new health index calculation method that aims to improve the overall effectiveness of the assessment. The proposed algorithm is based on regularly conducted oil diagnostics and easily available maintenance data to enable estimation and updating of the device’s health status in short intervals from an operational point of view. This method is compared to another health index algorithm built from the same parameters, but with different weights and an alternative result assessment philosophy. The two health index calculation methods are tested on a population of 96 power transformers and then compared to results obtained with an expert system, which is based on much more advanced diagnostic tests to determine the technical condition of the unit. The results of the experiment show that proper selection of weighting factors of the transformer’s technical condition parameters during health index calculation may help in simplifying its assessment while maintaining satisfactory accuracy in comparison to a highly advanced expert method.


1987 ◽  
Vol 109 (4) ◽  
pp. 410-413 ◽  
Author(s):  
Norio Miyagi ◽  
Hayao Miyagi

This note applies the direct method of Lyapunov to stability analysis of a dynamical system with multiple nonlinearities. The essential feature of the Lyapunov function used in this note is a non-Lure´ type Lyapunov function which surpasses the Lure´-type Lyapunov function from the point of view of the stability region guaranteed. A modified version of the multivariable Popov criterion is used to construct non-Lure´ type Lyapunov function, which allow for the dynamical sytems with multiple nonlinearities.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Haifa Bin Jebreen ◽  
Yurilev Chalco-Cano

In this article, the exact wave structures are discussed to the Caudrey-Dodd-Gibbon equation with the assistance of Maple based on the Hirota bilinear form. It is investigated that the equation exhibits the trigonometric, hyperbolic, and exponential function solutions. We first construct a combination of the general exponential function, periodic function, and hyperbolic function in order to derive the general periodic-kink solution for this equation. Then, the more periodic wave solutions are presented with more arbitrary autocephalous parameters, in which the periodic-kink solution localized in all directions in space. Furthermore, the modulation instability is employed to discuss the stability of the available solutions, and the special theorem is also introduced. Moreover, the constraint conditions are also reported which validate the existence of solutions. Furthermore, 2-dimensional graphs are presented for the physical movement of the earned solutions under the appropriate selection of the parameters for stability analysis. The concluded results are helpful for the understanding of the investigation of nonlinear waves and are also vital for numerical and experimental verification in engineering sciences and nonlinear physics.


2020 ◽  
Author(s):  
Niccolò Menegoni ◽  
Daniele Giordan ◽  
Cesare Perotti

<p>The recent advantages in Remote Piloted Aerial System (RPAS) and 3D Digital/Virtual Outcrop Model (DOM/VOM) development from RGB images (e.g. Structure from Motion, SfM;  Multi Stereo View, MSV; Simultaneous Localization And Mapping, SLAM)  have increased the application of these technology in stability analysis of unstable rock cliffs affected by rock fall due to possibility to perform analysis with higher resolution, accuracy, safety and time-saving to respect the traditional manual techniques, and with higher applicability and affordability to respect the Laser Scanner technology. The principal aims of a geoengineering  inspection of an unstable rock slope are to identify the possible Mode of Failure (MoF) of the rock mass (e.g. planar sliding, wedge sliding, toppling) and to estimate the rock volume that could be involved in a possible failure event. Then these results can be used for further numerical models and applications, as the rock fall simulations, here the uncertainty of the input parameters deeply influence the output results and, therefore, the reliability of the simulation. Due to the novelty of the RPAS-based DOMs, the uncertainty of the stability analysis is not always correctly identified (e.g. uncertainty equal to the DOM accuracy) and, therefore, sometimes the results and conclusion of the analysis could be partially wrong. Identifying and quantifying correctly the uncertainty is really important especially during emergency condition, when crucial decision must be made quickly.</p><p>In this study, the uncertainty of the stability analysis of the unstable rock cliff of Gallivaggio (Western Alps, Italy) is deeply investigated due to the possibility to compare the Mode of Failure and the unstable rock volume estimated before the failure event of the 29th May 2018 onto a DOM developed using the RPAS, with those identified and calculated after the failure. In particular, it is shown as uncertainty component of the instrumental error could be almost totally negligible to respect the components of the manual interpretation and analysis, also when no Ground Control Points (GCPs) are used to develop the DOM.</p>


2000 ◽  
Vol 122 (6) ◽  
pp. 677-680 ◽  
Author(s):  
M. Zidi ◽  
S. Ramtani

Bone remodeling is widely viewed as a dynamic process—maintaining bone structure through a balance between the opposed activities of osteoblast and osteoclast cells—in which the stability problem is often pointed out. By an analytical approach, we present a bone remodeling model applied to n unit-elements in order to analyze the stationary states and the condition of their stability. In addition, this theory has been simulated in a computer model using the Finite Element Method (FEM) to show a relationship between the bone remodeling process and the stability analysis. [S0148-0731(00)01806-9]


1990 ◽  
Vol 140 ◽  
pp. 441-442
Author(s):  
P. Pietrini

Two aspects of the MHD stationary equilibrium model developed by Chiuderi et al.(1989) to describe extragalactic jets are analyzed and compared with the observational constraints: the global energy flux convected by the cylindrical jet and the ranges of the equilibrium parameters allowed by the stability analysis. In particular, the results obtained from the temporal stability analysis are converted into a spatial point of view. In this context, it is easier to find essentially “stable” equilibrium configurations for shorter jets. In conclusion, the fundamental hypotheses of this model (like thermal confinement and substantial equipartition among the various forms of energy considered) are such that the model turns out to be suitable for the description of class I jets, associated with rather low-power radio sources.


Sign in / Sign up

Export Citation Format

Share Document