scholarly journals Comparison of Blade Dimension Design of a Vertical Wind Turbine Applied in Low Wind Speed

2018 ◽  
Vol 68 ◽  
pp. 01001
Author(s):  
Rizky Brillian Yuliandi ◽  
Rusdianasari ◽  
Tresna Dewi

The type of vertical turbine used for this research was a savonious where the profile of the blade was made in the form of a half-cylinder. The performance of the turbine rotation was strongly influenced by the swept area. Drag and lift force was influenced by the swept area. Both of the forces had its own advantages and disadvantages. Because of that, the dimensional engineering was implemented to obtain the optimal performance of the turbine. Experimental dimensions were tested with the variation of height size (H = 40 cm and 60 cm) and diameter size (D = 40 cm and 60 cm). The distance between the blades known as the overlap ratio was related to the dimensions. Overlap ratio has a role to the upwind and downwind wind flow because the overlap ratio changes affect the swept area. The experimental variation of the overlap ratio was at the distance of 0 cm and 10 cm. The experimental results concluded that the best turbine performance was obtained during wind turbine testing with H = 40 cm and D = 60 cm on primary overlap value minus 10 cm and secondary overlap 0 cm.

2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Armin Roshan ◽  
Amir Sagharichi ◽  
Mohammad Javad Maghrebi

Abstract Vertical axial wind turbines are the most commonly used turbines in residential and urban areas. This paper investigates the effect of combining Darrieus and Savonius wind turbines on power output and introduces a wind turbine with high starting torque addition to the wide working domain. A two-dimensional computational fluid dynamics transient simulation is developed, and a moving mesh is implemented for rotating moving parts. Comprehensive research has been carried out to investigate the effects of the initial overlap ratio (ɛ), arc angle Ø, and curvature (α) of Savonius blades on the performance of the turbine and 18 models are simulated at seven tip speed ratios. The results showed that combining the Darrieus turbine with the Savonius turbine has a favorable effect on self-starting performance. Also, it was observed that by changing each of the parameters, the primary model performance could be significantly improved. Finally, it is concluded that ɛ = 0.25, α = 0.25, and ∅ = 150 deg are the optimum values of the parameters which increase turbine power output compared to conventional vertical-axis turbines.


2016 ◽  
Vol 78 (8-4) ◽  
Author(s):  
Muhammad Hafidz Ariffudin ◽  
Fazila Mohd Zawawi ◽  
Haslinda Mohamed Kamar ◽  
Nazri Kamsah

There has been an increasing demand for renewable energy in order to create a sustainable society as the non-renewable energies such as fossil fuel resources are limited. Modern wind turbines claim that they have a high efficiency in term of wind energy extraction. However, there are still having losses due to tip vortex causing to a reduction in performance.  Motivated by this reason, this research aims at exploring the possibility to increase the performance of low speed small-scaled horizontal axis wind turbine with various tip devices using Computational Fluid Dynamics (CFD). Four wind turbine blades with different tip devices which consist of sword tip, swept tip, upwind winglet and downwind winglet are compared with wind turbine blade without tip device in term of CP. The application of tip device can significantly reduce induced tip vortex and improve wind turbine performance. For TSR below than 4, adding a sword tip increases CP about 7.3%, swept tip increases CP about 9.1%, upwind winglet increases CP about 1.8% and downwind winglet increases CP about 3.2%. It is observed that the best tip device for low wind speed application is swept tip as it give the highest performance increment compared to without tip device.


Author(s):  
H. L. Suresh ◽  
C. V. Mohan ◽  
Nitin Kumar Reddy K N

In this paper modeling and simulation has been studied by means of impact of energy generated by using wind turbine. The strength conversion primarily depends on the wind velocity and swept area. When design wind structures it’s very important to recognize predicted electricity and electricity output for calculating financial viability. Wind turbine performance depends on wind speed, air density, air pressure, temperature and length of blade. The modeling and simulation method is used to analyze the overall performance of wind turbine.


2018 ◽  
Vol 1 (02) ◽  
pp. 15-20
Author(s):  
Luthfi - Hakim ◽  
Achmad Rijano ◽  
Mochamad Muzaki

 The Darrieus-Savonius (DS) wind turbine has been widely developed with the aim of improving turbine performance that has been designed. DS wind turbine is a combination of two type of wind turbines, that is Darrieus and Savonius turbine, both turbines are intentionally developed In order to get self-starting on turbine Savonius with low wind speed and able to extract the speed of engine into energy well at high wind speed through Cherrie Darrieus. This study was conducted to analyze the performance of the DS turbine in the wind speed to be energized through the turbine rotation and power to be generated. The DS wind turbine is designed to start rotating at a speed of 8 m/s in velocity of wind, meanwhile the maximum power generated by turbine is 48,23 Watts. 


2015 ◽  
Vol 787 ◽  
pp. 134-137
Author(s):  
S.P.R. Febi Ponwin ◽  
S. Rajkumar

Wind energy is one of the promising renewable energy resources. The challenges in utilizing the renewable energy sources are making them reliable with good efficiency. Wind turbine plays a major role in industrial power supply during heavy wind conditions. However, in domestic applications, the small scale wind turbine has major issue of low starting torque due to low wind speed near the ground surface. These conditions make the air motion as laminar flow with the Reynolds number less than 5x105. Hence, in some adverse condition there is a laminar flow separation which increases the drag and consequently reduces the lift force. This paper gives a comprehensive review on the investigations that are being carried out on low Reynolds number regime aerofoil and laminar separation bubble to enhance the lift force especially at low wind speed conditions.


2018 ◽  
Author(s):  
Eyal Shalem Gilad

Most of the world's wind turbines operate under various turbulent wind conditions. Turbulent wind is a big source of uncertainty, and could cause, if unaddressed, significant variation from a turbine's calculated efficiency and even its destruction.Turbulent flow in wind turbines has a profound effect on various aspects including structural load, estimation of a site's energy potential, calculated efficiency, and many more. However, even though significant advances have been made in the field of anemometry the subjects of estimating a wind turbine's site energy potential and analyzing a turbine's efficiency has not been updated.In this work high frequency wind measurements that included wind speed using two different anemometers, wind direction and others were gathered and analyzed. The energy potential and efficiency of the turbine was calculated using this data and compared to the figures that would have been received by using the methods described in the IEC 61400-12-2 Standard.Results show that by using a higher frequency measuring system both a site's energy potential and turbine's efficiency can vary substantially in comparison with the methods described in the International Standard.This research can affect the way a future wind turbine's site energy potential is measured, it can cause existing wind turbine to reevaluate their productivity performance, and on top of all it can cause the examination of the validity of the International Standards regarding wind turbine performance: IEC 61400-12-1 and IEC 61400-12-2.


Sign in / Sign up

Export Citation Format

Share Document