scholarly journals The Methods of Process Planning Gas Treatment Facilities of a Power Plant

2019 ◽  
Vol 105 ◽  
pp. 02017
Author(s):  
Olesya Aksenova ◽  
Evgenia Nikolaeva ◽  
Riccardo Paulman

The article seeks to examine the efficiency of applying means of mathematical processing and computer modeling of the work processes of gas cleaning facilities of power plants to optimize the process of planning and designing of future power plant in operation. A way of solution of the gas outbursts cleaning problem at the stage of designing measures for the development of waste processing systems through mathematical processing of expected volumes of gas outbursts and computer simulation of individual pieces of equipment and working areas as a whole is offered. The authors present the results of the processing of the projected technological processes and the gas outbursts cleaning facilities in terms of E-networks and using mathematical processing in the application Simulink, which allows to build a model of the device and to carry out calculations on the screen using the library of building blocks. A 3D model of the gas cleaning facilities, which allows to visualize the technological process and to compare it with theoretical calculations at the design stage of the future power plant and, if necessary, make changes to the project, has been created by means of computer modeling.

2018 ◽  
Vol 41 ◽  
pp. 02011 ◽  
Author(s):  
Olesya Aksenova ◽  
Evgenia Nikolaeva

The article seeks to examine the efficiency of applying means of mathematical processing and computer modeling of the work processes of gas cleaning facilities of power plants to optimize the process of planning and designing of future power plant in operation. A way of solution of the gas outbursts cleaning problem at the stage of designing measures for the development of waste processing systems through mathematical processing of expected volumes of gas outbursts and computer simulation of individual pieces of equipment and working areas as a whole is offered. The authors present the results of the processing of the projected technological processes and the gas outbursts cleaning facilities in terms of E-networks and using mathematical processing in the application Simulink, which allows to build a model of the device and to carry out calculations on the screen using the library of building blocks. A 3D model of the gas cleaning facilities, which allows to visualize the technological process and to compare it with theoretical calculations at the design stage of the future power plant and, if necessary, make changes to the project, has been created by means of computer modeling.


2020 ◽  
Vol 178 ◽  
pp. 01008
Author(s):  
Mikle Egorov ◽  
Anastasiya Ukolova ◽  
Ivan Kovalenko ◽  
Irina Krectunova ◽  
Nataliya Lavrovskaya ◽  
...  

It is possible to increase the efficiency of the nuclear power plants equipment in various ways. In particular, one of the most relevant is the active use of computer modeling at different stages of work. The effectiveness the software package used directly affects the quality of the installation equipment. Depending on the stage at which the software package is used, it has various priority properties for the most effective application.


2019 ◽  
Vol 11 (4) ◽  
pp. 288-293 ◽  
Author(s):  
A. T. Zamalieva ◽  
M. G. Ziganshin

Energy is the basic sector of the economy and the largest consumer of primary energy resources of any country, which is why the development of world energy is accompanied by global pressure on the environment. The issues are considered of reducing the atmospheric impact of emissions of thermal power plants, improving the reliability and working life of their units, systems, and plants as a whole. The principles are presented of development and improvement of technologies for processing industrial emissions of thermal power plants, the neutralization of which is currently relevant on a regional and global scale. Analysis is carried out of existing methods of cyclone and filtration treatment. An improved design of a cyclone filter is proposed, which allows to increase the reliability of gas turbine and steam-gas units of TPP, while ensuring the efficiency of separation of the suspended part of the flow at the gas treatment point (GTP) of TPP. Similar devices can also be used to increase the degree of cleaning atmospheric emissions released by the TPP coal dust preparation and flue gas systems at coal generation from fi ne particles of PM10 and PM2,5 classes (coal dust and ash), owing to reduction of the size of caught particles from average values for cyclones and wet scrubbers of the order of 5–10 μm to 0.5 μm. The design of the cyclone filter is improved as a result of research of cyclone filtration by methods of Computational Fluid Dynamics (CFD). A system of Reynolds-averaged equations of a single-phase Navier-Stokes flow is used for mathematical modeling of motion in the cyclone filter. To determine the efficiency of separation of the suspended part of the flow in the cyclone filter, the Rercomplex is used obtained by reducing a set comprising the Navier-Stokes equations and the equation of particle motion based on Newton's law to a dimensionless form. Numerical characteristics of the suspension sedimentation from a multiphase flow in a cyclone separator of specified dimensions are found by means of the Rercomplex. The results of bench tests of the proposed design of the cyclone filter are given. 


Akustika ◽  
2021 ◽  
pp. 133-137
Author(s):  
Vladimir Tupov ◽  
Vitaliy Skvortsov

The power equipment of thermal power plants is a source of noise to the surrounding area. One of the sources of noise for the surrounding area are gas distribution points (GDP) of thermal power plants (TPP) and district thermal power plants (RTS). Noise from gas distribution points may exceed sanitary standards at the border of the sanitary protection zone. The article shows that the radiated noise from gas distribution points depends on the power of the thermal power plant (natural gas consumption) and the type of valves. Three types of valves used in gas distribution points are considered. Formulas are obtained for calculating the width of the sanitary protection zone for gas distribution points for thermal stations, depending on the consumption of natural gas (electric power of the thermal power plant) and the type of valve. It is shown that, depending on the valve used, the noise level at the border of the sanitary protection zone can either meet sanitary standards or exceed them. This allows at the design stage to select the required type of valve or to determine mitigation measures from hydraulic fracturing.


Author(s):  
Giorgio Cau ◽  
Daniele Cocco ◽  
Augusto Montisci

This paper concerns a performance evaluation of advanced zero emissions (NOx, SOx, CO and particulate, but also CO2), coal gasification integrated power plants with hydrogen combustion (ZE-IGHC). In ZE-IGHC power plants the hydrogen is produced through CO shift conversion and subsequent CO2 separation. The hydrogen is burned using pure oxygen in an internal combustion steam power plant with double combustion and thermodynamic regeneration. As a result of raw gas cleaning, CO2 separation and hydrogen combustion with oxygen, the ZE-IGHC power plant eliminates pollutant and greenhouse gas emissions. A comparative study of ZE-IGHC plant configurations based on different gasifiers and raw gas cooling options indicated that net efficiencies of up to about 50% can be achieved by resorting to configurations based on dry-feed gasifiers and raw gas cooling heat recovery with steam production. The simpler and cheaper plant configurations based on wet-feed gasifiers and raw gas quench systems give an efficiency penalty of about 3-4 % points. The ZE-IGHC power plant presented here can be a very attractive option for a near term, coal-fired power generation system. What is more, its major components are already adopted in conventional power plants and only the hydrogen combustors and the high temperature turbine require technology development.


2021 ◽  
Vol 25 (2) ◽  
pp. 207-219
Author(s):  
A. D. Mekhryakov ◽  
A. N. Kudryashov ◽  
T. V. Koval

The study aims to improve the efficiency of waste utilisation from the coal-fired power industry based on an analysis of the dry-ash output unit operating at the Novo-Irkutsk Combined Heat and Power Plant, JSC “Irkutskenergo”. The unit was tested under various operating conditions of steam generating blocks following the standard methods adopted at the enterprise. The tests showed that the station steam generating block No. 3 (with a steam load of 409.2 t/h and an electrostatic precipitator efficiency of 90.46%) provided an ash supply efficiency of 7.10 t/h. When the ash is supplied from the steam generating block No. 4, operating at a steam load of 421.8 t/h and an electrostatic precipitator efficiency of 94.72%, the ash supply efficiency amounts to 9.19 t/h. Under the simultaneous operation of the steam generating blocks No. 3 and 4 at a steam load of 397.6 and 380.7 t/h, respectively, and an electrostatic precipitator efficiency of 90.46 and 94.72%, respectively, the unit efficiency was 14.23 t/h. As a result, limitations in the unit operation were identified. Thus, the airspeed in the pneumatic ash pipeline during ash transporting was 8.0-8.5 m/s, which facilitated the operation of the dry-ash output unit in a pulsed cycle. It was, therefore, recommended to increase the airspeed by accelerating the flow rate through the jet pump or by using a smaller diameter pipe. The conducted analysis showed that the efficiency of the dry-ash output unit depends mainly on the steam capacity of steam generating blocks, as well as on the flue gas cleaning efficiency in the steam generator electrostatic precipitators. The obtained results were used to determine the technical state, efficiency and reliability of the dry-ash output unit of the Novo-Irkutsk Combined Heat and Power Plant.


2020 ◽  
Vol 174 ◽  
pp. 01019
Author(s):  
Olesya Aksenova ◽  
Evgenia Nikolaeva ◽  
Ibodat Haldybaeva

The article considers the possibility of joint application of mathematical processing and computer 3D modeling of the technological process line for processing ash and slag waste from thermal power plants (TPP). The authors suggest considering an approach to the design of the ash and slag waste processing site by mathematical processing and 3D computer modeling. The mathematical processing with the help of E- network device and the creation of a 3D model allows to plan the site for processing ash and slag waste, select the appropriate technology and thereby ensure the environmental effect of both existing and projected power plants. The authors present the results of processing the technological process of recycling ash and slag wastes of TPP in terms of E-networks using mathematical processing in the Simulink application, which displays the device model from the standard blocks available in the program and performs the necessary calculations. 3D models of individual equipment units selected on the basis of mathematical processing calculations in the Simulink application, were created using computer 3D modeling in a graphical editor. A 3D visualization of the technological section of ash and slag waste processing was performed, which allows to clearly show the planned section at the design stage, which, if necessary, will allow to easily make changes to the project.


2021 ◽  
Vol 315 ◽  
pp. 01003
Author(s):  
Olesya Aksenova ◽  
Evgenia Nikolaeva

The article discusses the possibility of 3D computer modeling tools complex use based on the mathematical processing of the gas emissions from TPP cleaning process. The authors propose to consider an approach to designing a site for capturing solid particles in gas emissions that appear during the production activities of an industrial enterprise by modeling a technological site in various programs. Mathematical processing with the use of the E-network device and the creation of a 3D model enables to plan a site for capturing solid particles in gas emissions, choose the appropriate technology and thereby ensure the ecological effect of both existing and projected power plants. The authors present the results of processing the technological process of gas purification at thermal power plants in terms of E-networks using mathematical processing in the Simulink application, which displays a device model from the standard units available in the program and performs the necessary calculations. 3D models of individual pieces of equipment selected on the basis of mathematical processing calculations in the Simulink application were created using computer 3D modeling in a graphical editor. A 3D visualization of the technological site for capturing solid particles in gas emissions was carried out, enabling a visual display of the planned site at the design stage, which, if necessary, will allow an easy introduction of modifications to the project.


2020 ◽  
Vol 39 (5) ◽  
pp. 6339-6350
Author(s):  
Esra Çakır ◽  
Ziya Ulukan

Due to the increase in energy demand, many countries suffer from energy poverty because of insufficient and expensive energy supply. Plans to use alternative power like nuclear power for electricity generation are being revived among developing countries. Decisions for installation of power plants need to be based on careful assessment of future energy supply and demand, economic and financial implications and requirements for technology transfer. Since the problem involves many vague parameters, a fuzzy model should be an appropriate approach for dealing with this problem. This study develops a Fuzzy Multi-Objective Linear Programming (FMOLP) model for solving the nuclear power plant installation problem in fuzzy environment. FMOLP approach is recommended for cases where the objective functions are imprecise and can only be stated within a certain threshold level. The proposed model attempts to minimize total duration time, total cost and maximize the total crash time of the installation project. By using FMOLP, the weighted additive technique can also be applied in order to transform the model into Fuzzy Multiple Weighted-Objective Linear Programming (FMWOLP) to control the objective values such that all decision makers target on each criterion can be met. The optimum solution with the achievement level for both of the models (FMOLP and FMWOLP) are compared with each other. FMWOLP results in better performance as the overall degree of satisfaction depends on the weight given to the objective functions. A numerical example demonstrates the feasibility of applying the proposed models to nuclear power plant installation problem.


2019 ◽  
Vol 7 (2B) ◽  
Author(s):  
Vanderley Vasconcelos ◽  
Wellington Antonio Soares ◽  
Raissa Oliveira Marques ◽  
Silvério Ferreira Silva Jr ◽  
Amanda Laureano Raso

Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. This inspection is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI is reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components, such as FMEA (Failure Modes and Effects Analysis) and THERP (Technique for Human Error Rate Prediction). An example by using qualitative and quantitative assessesments with these two techniques to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues, is presented.


Sign in / Sign up

Export Citation Format

Share Document