scholarly journals Comprehensive environmental evaluation of an urbanized territory (using the example of Zavodoukovsk city, Russia)

2019 ◽  
Vol 110 ◽  
pp. 02114
Author(s):  
Marina Podkovyrova ◽  
Olga Volobueva ◽  
Larisa Gilyova

The article presents the technique and the result of a comprehensive evaluation of urban land use, ensuring the receipt of complete and reliable information about the urban development, socio-economic and environmental conditions of urban land resources that allows forming the maximum possible sustainable development of the city for the future.

Author(s):  
S. Khademi ◽  
M. Norouzi ◽  
M. Hashemi

<p><strong>Abstract.</strong> Determining the manner of land-use and the spatial structure of cities on the one hand, and the economic value of each piece of land on the other hand, land-use planning is always considered as the main part of urban planning. In this regard, emphasizing the efficient use of land, the sustainable development approach has presented a new perspective on urban planning and consequently on its most important pillar, i.e. land-use planning. In order to evaluate urban land-use, it has been attempted in this paper to select the most significant indicators affecting urban land-use and matching sustainable development indicators. Due to the significance of preserving ancient monuments and the surroundings as one of the main pillars of achieving sustainability, in this research, sustainability indicators have been selected emphasizing the preservation of ancient monuments and historical observance of the city of Susa as one of the historical cities of Iran. It has also been attempted to integrate these criteria with other land-use sustainability indicators. For this purpose, Kernel Density Estimation (KDE) and the AHP model have been used for providing maps displaying spatial density and combining layers as well as providing final maps respectively. Moreover, the rating of sustainability will be studied in different districts of the city of Shush so as to evaluate the status of land sustainability in different parts of the city. The results of the study show that different neighborhoods of Shush do not have the same sustainability in land-use such that neighborhoods located in the eastern half of the city, i.e. the new neighborhoods, have a higher sustainability than those of the western half. It seems that the allocation of a high percentage of these areas to arid lands and historical areas is one of the main reasons for their sustainability.</p>


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 715
Author(s):  
Yingkai Tang ◽  
Kun Wang ◽  
Xuanming Ji ◽  
He Xu ◽  
Yangqing Xiao

Rapid urbanization has provided a strong impetus for the economic growth of China, but it has also caused many problems such as inefficient urban land use and environmental pollution. With the popularization of the concept of green and sustainable development, the Environmental-Social-Governance (ESG) assessment concept is widely accepted. The government and residents are paying more and more attention to environmental issues in urban development, and environmental protection has formed an important part of urban development. In this context, this study takes 26 cities in the Yangtze River Delta as examples to build an evaluation system for urban land-use efficiency under green development orientation. The evaluation system takes into account the inputs of land, capital, labor, and energy factors in the process of urban development. Based on emphasizing economic output, the social benefits and undesired outputs brought about by urban development are taken into account. This paper measures urban land use efficiency by the super-efficiency SBM model, and on this basis, analyses the spatial-temporal evolution characteristics of urban land-use efficiency. Further, this paper measures urban land use efficiency without considering undesired outputs and compares the two evaluation methods. Again, the comparison illustrates the rationality of urban land use efficiency evaluation system under green development orientation.


2021 ◽  
Vol 13 (4) ◽  
pp. 2338
Author(s):  
Xinxin Huang ◽  
Gang Xu ◽  
Fengtao Xiao

As one of the 17 Sustainable Development Goals, it is sensible to analysis historical urban land use characteristics and project the potentials of urban sustainable development for a smart city. The cellular automaton (CA) model is the widely applied in simulating urban growth, but the optimum parameters of variables driving urban growth in the model remains to be continued to improve. We propose a novel model integrating an artificial fish swarm algorithm (AFSA) and CA for optimizing parameters of variables in the urban growth model and make a comparison between AFSA-CA and other five models, which is used to study a 40-year urban land growth of Wuhan. We found that the urban growth types from 1995 to 2015 appeared relatively consistent, mainly including infilling, edge-expansion and distant-leap types in Wuhan, which a certain range of urban land growth on the periphery of the central area. Additionally, although the genetic algorithms (GA)-CA model and the AFSA-CA model among the six models due to the distance variables, the parameter value of the GA-CA model is −15.5409 according to the fact that the population (POP) variable should be positively. As a result, the AFSA-CA model regardless of the initial parameter setting is superior to the GA-CA model and the GA-CA model is superior to all the other models. Finally, it is projected that the potentials of urban growth in Wuhan for 2025 and 2035 under three scenarios (natural urban land growth without any restrictions (NULG), sustainable urban land growth with cropland protection and ecological security (SULG), and economic urban land growth with sustainable development and economic development in the core area (EULG)) focus mainly on existing urban land and some new town centers based on AFSA-CA urban growth simulation model. An increasingly precise simulation can determine the potential increase area and quantity of urban land, providing a basis to judge the layout of urban land use for urban planners.


2019 ◽  
Vol 11 (23) ◽  
pp. 6649
Author(s):  
Jing Huang ◽  
Dongqian Xue

China’s urban land use has shifted from incremental expansion to inventory eradication. The traditional extensive management mode is difficult to maintain, and the fundamental solution is to improve land use efficiency. Xi’an, the largest central city in Western China, was selected as the research area. The super-efficiency data envelopment analysis (DEA) model and Malmquist index method were used to measure the land use efficiency of each district and county in the city from the micro perspective, and the spatial-temporal change characteristics and main influencing factors of land use efficiency were analyzed, which not only made up for the research content of urban land use efficiency in China’s underdeveloped areas, but also pointed out the emphasis and direction for the improvement of urban land use efficiency. The results showed that: (1) The land use efficiency of Xi’an reflected the land use intensive level of the underdeveloped areas in Western China, that is, the overall intensive level was not high, the gap between the urban internal land use efficiency was large, the land use efficiency of the old urban area and the mature built-up area was relatively high, and the land use efficiency of the emerging expansion area and the edge area was relatively low. (2) Like the eastern economically developed areas, the land use efficiency of western economically underdeveloped areas was generally on the rise, while Xi’an showed the U-shaped upward evolution characteristics, and there were four types of changes in the city, that is, highly intensive, medium intensive, high–medium–low-intensive, and intensive–extensive. (3) Various cities should configure resources and optimize mechanism to improve their land use efficiency based on economic and social development. During the study period, Xi’an showed the law of evolution from the south edge area and the emerging expansion area to the main urban area. (4) The improvement of technological progress was the main contribution factor of the land use efficiency in underdeveloped areas of China, and the low-scale efficiency was the main influence factor that caused low land use efficiency. In future urban land use, efforts should be made to optimize and upgrade technology and strictly control the extensive use of land.


Atmosphere ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 42 ◽  
Author(s):  
Wei Sun ◽  
Zhihong Liu ◽  
Yang Zhang ◽  
Weixin Xu ◽  
Xiaotong Lv ◽  
...  

The expansion of urban areas and the increase in the number of buildings and urbanization characteristics, such as roads, affect the meteorological environment in urban areas, resulting in weakened pollutant dispersion. First, this paper uses GIS (geographic information system) spatial analysis technology and landscape ecology analysis methods to analyze the dynamic changes in land cover and landscape patterns in Chengdu as a result of urban development. Second, the most appropriate WRF (Weather Research and Forecasting) model parameterization scheme is selected and screened. Land-use data from different development stages in the city are included in the model, and the wind speed and temperature results simulated using new and old land-use data (1980 and 2015) are evaluated and compared. Finally, the results of the numerical simulations by the WRF-Chem air quality model using new and old land-use data are coupled with 0.25° × 0.25°-resolution MEIC (Multi-resolution Emission Inventory for China) emission source data from Tsinghua University. The results of the sensitivity experiments using the WRF-Chem model for the city under different development conditions and during different periods are discussed. The meteorological conditions and pollution sources remained unchanged as the land-use data changed, which revealed the impact of urban land-use changes on the simulation results of PM2.5 atmospheric pollutants. The results show the following. (1) From 1980 to 2015, the land-use changes in Chengdu were obvious, and cultivated land exhibited the greatest changes, followed by forestland. Under the influence of urban land-use dynamics and human activities, both the richness and evenness of the landscape in Chengdu increased. (2) The microphysical scheme WSM3 (WRF Single–Moment 3 class) and land-surface scheme SLAB (5-layer diffusion scheme) were the most suitable for simulating temperatures and wind speeds in the WRF model. The wind speed and temperature simulation results using the 2015 land-use data were better than those using the 1980 land-use data when assessed according to the coincidence index and correlation coefficient. (3) The WRF-Chem simulation results obtained for PM2.5 using the 2015 land-use data were better than those obtained using the 1980 land-use data in terms of the correlation coefficient and standard deviation. The concentration of PM2.5 in urban areas was higher than that in the suburbs, and the concentration of PM2.5 was lower on Longquan Mountain in Chengdu than in the surrounding areas.


Author(s):  
Meisam Jafari ◽  
Seyed Masoud Monavari ◽  
Hamid Majedi ◽  
Ali Asghar Alesheikh ◽  
Mirmasoud Kheirkhah Zarkesh

Although, promotion of urbanization culture in recent decades has made inevitable development of cities in the world, however, the development can be guided in a direction that leave, to the extent possible, minimum socioeconomic and environmental impacts. For this, it is required to first forecast auto-spreading orientation of cities and suburbs in rural areas over time and then avoid shapeless growth of cities. This paper is an attempt to develop a dynamic hybrid model based on logistic regression (LR), Markov chain (MC), and cellular automata (CA) for prediction of future urban sprawl in fast-growing cities. The model was developed using 12 widely-used urban development criteria, whose significant coefficient was determined by logistic regression, and validated by relative operating characteristic (ROC) analysis. The validated model was run in Guilan, a tourist province in northern Iran with a very high rate of urban development. For this, changes in the area of urban land use were detected over the period of 1989 to 2013 and then, future sprawl of the province was forecasted by the years 2025 and 2037. The analysis results revealed that the area of urban land use was increased by more than 1.7 % from 36012.5 ha in 1989 to 59754.8 ha in 2013, and the area of Caspian Hyrcanian forestland was reduced by 31628 ha. The results also predicted an alarming increase in the rate of urban development in the province by the years 2025 and 2037, during which urban land use is predicted to develop 0.9 % and 1.38 %, respectively. The development pattern is expected to be uneven and scattered, without following any particular direction. The development will occur close to the existing or newly-formed urban basements as well as around major roads and commercial areas. This development, if not controlled, will lead to the loss of 13863 ha of Hyrcanian forests and if the trend continues, 21013 ha of Hyrcanian forests and 20208 ha of Barren/open lands are expected to be destroyed by the year 2037. In general, the proposed model is an efficient tool for the support of urban planning decisions and facilitates the process of sustainable development of cities by providing decision-makers with an overview on future development of cities where the growth rate is very fast.


2021 ◽  
Vol 21 (4) ◽  
pp. 2795-2818
Author(s):  
Trang Thi Quynh Nguyen ◽  
Wataru Takeuchi ◽  
Prakhar Misra ◽  
Hayashida Sachiko

Abstract. Emission inventories are important for both simulating pollutant concentrations and designing emission mitigation policies. Ho Chi Minh City (HCMC) is the biggest city in Vietnam but lacks an updated spatial emission inventory (EI). In this study, we propose a new approach to update and improve a comprehensive spatial EI for major short-lived climate pollutants (SLCPs) and greenhouse gases (GHGs) (SO2, NOx, CO, non-methane volatile organic compounds (NMVOCs), PM10, PM2.5, black carbon (BC), organic carbon (OC), NH3, CH4, N2O and CO2). Our originality is the use of satellite-derived urban land use morphological maps which allow spatial disaggregation of emissions. We investigated the possibility of using freely available coarse-resolution satellite-derived digital surface models (DSMs) to estimate building height. Building height is combined with urban built-up area classified from Landsat images and nighttime light data to generate annual urban morphological maps. With outstanding advantages of these remote sensing data, our novel method is expected to make a major improvement in comparison with conventional allocation methodologies such as those based on population data. A comparable and consistent local emission inventory (EI) for HCMC has been prepared, including three key sectors, as a successor of previous EIs. It provides annual emissions of transportation, manufacturing industries, and construction and residential sectors at 1 km resolution. The target years are from 2009 to 2016. We consider both Scope 1, all direct emissions from the activities occurring within the city, and Scope 2, that is indirect emissions from electricity purchased. The transportation sector was found to be the most dominant emission sector in HCMC followed by manufacturing industries and residential area, responsible for over 682 Gg CO, 84.8 Gg NOx, 20.4 Gg PM10 and 22 000 Gg CO2 emitted in 2016. Due to a sharp rise in vehicle population, CO, NOx, SO2 and CO2 traffic emissions show increases of 80 %, 160 %, 150 % and 103 % respectively between 2009 and 2016. Among five vehicle types, motorcycles contributed around 95 % to total CO emission, 14 % to total NOx emission and 50 %–60 % to CO2 emission. Heavy-duty vehicles are the biggest emission source of NOx, SO2 and particulate matter (PM) while personal cars are the largest contributors to NMVOCs and CO2. Electricity consumption accounts for the majority of emissions from manufacturing industries and residential sectors. We also found that Scope 2 emissions from manufacturing industries and residential areas in 2016 increased by 87 % and 45 %, respectively, in comparison with 2009. Spatial emission disaggregation reveals that emission hotspots are found in central business districts like Quan 1, Quan 4 and Quan 7, where emissions can be over 1900 times those estimated for suburban HCMC. Our estimates show relative agreement with several local inherent EIs, in terms of total amount of emission and sharing ratio among elements of EI. However, the big gap was observed when comparing with REASv2.1, a regional EI, which mainly applied national statistical data. This publication provides not only an approach for updating and improving the local EI but also a novel method of spatial allocation of emissions on the city scale using available data sources.


Sign in / Sign up

Export Citation Format

Share Document