scholarly journals Efficiency Assessment of Renewable Energy Sources

2019 ◽  
Vol 114 ◽  
pp. 05001 ◽  
Author(s):  
Oleg V. Marchenko ◽  
Sergei V. Solomin

A review of the methods and models used at the ESI SB RAS to assess the effectiveness of renewable energy sources (RES) was carried out. Criteria were formulated and calculation formulas were given for a preliminary assessment of the competitiveness of renewable energy sources as compared to alternative energy supply options. A mathematical model of the world energy system was considered, where renewable energy sources were described by averaged indicators. The model allows for different scenarios of external conditions to explore the prospects for the development of energy technologies, including renewable energy sources. For the analysis of autonomous energy systems with RES, a simulation model was developed so as to treat the processes of production, consumption, and energy storage in their dynamics. The optimization version of the mathematical model eliminates the need for a pre-assignment of the energy flow control algorithm. In this case, it is possible to study systems with the simultaneous presence of several units of energy storage of various types. For the study of renewable energy sources under market conditions, a model was developed so as to take into account the presence of various decision-making hubs, as well as the impact of governmental regulatory bodies in the market. It was shown that the most efficient mechanism for encouraging the development of renewable energy sources is the creation of a market for "green certificates", with the least efficient renewable energy sources to be subsidized.

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6119
Author(s):  
A.S.M. Mominul Hasan

This exploratory research outlines an opportunity for increasing renewable energy share in Bangladesh by using electric rickshaws (e-rickshaws) as a catalyst. The overall objective of this research is to show how to utilise an existing opportunity, such as e-rickshaws, as energy storage options for integrating renewable energy sources. It proposes a grid-connected local energy system considering a battery swapping and charging station (BSCS) for e-rickshaws as a community battery energy storage (CBESS). This system was simulated using the HOMER Pro software. The simulation results show that such systems can help communities significantly reduce their dependency on the national grid by integrating solar PV locally. The proposed BSCS also shows an opportunity for battery demand reduction and circular battery management for electric rickshaws. The research also discusses the economies of scale of the proposed method in Bangladesh, and pathways for implementing microgrids and smart energy systems. The innovative concepts presented in this research will start a policy-level dialogue in Bangladesh for utilising local opportunities to find an alternative energy storage solution and provide momentum to the researchers for further studies.


Author(s):  
Dilara Gulcin Caglayan ◽  
Heidi Ursula Heinrichs ◽  
Detlef Stolten ◽  
Martin Robinius

The transition towards a renewable energy system is essential in order to reduce greenhouse gas emissions. The increase in the share of variable renewable energy sources (VRES), which mainly comprise wind and solar energy, necessitates storage technologies by which the intermittency of VRES can be compensated for. Although hydrogen has been envisioned to play a significant role as a promising alternative energy carrier in a future European VRES-based energy concept, the optimal design of this system remains uncertain. In this analysis, a hydrogen infrastructure is posited that would meet the electricity and hydrogen demand for a 100% renewable energy-based European energy system in the context of 2050. The overall system design is optimized by minimizing the total annual cost. Onshore and offshore wind energy, open-field photovoltaics (PV), rooftop PV and hydro energy, as well as biomass, are the technologies employed for electricity generation. The electricity generated is then either transmitted through the electrical grid or converted into hydrogen by means of electrolyzers and then distributed through hydrogen pipelines. Battery, hydrogen vessels and salt caverns are considered as potential storage technologies. In the case of a lull, stored hydrogen can be re-electrified to generate electricity to meet demand during that time period. For each location, eligible technologies are introduced, as well as their maximum capacity and hourly demand profiles, in order to build the optimization model. In addition, a generation time series for VRES has been exogenously derived for the model. The generation profiles of wind energy have been investigated in detail by considering future turbine designs with high spatial resolution. In terms of salt cavern storage, the technical potential for hydrogen storage is defined in the system as the maximum allowable capacity per region. Whether or not a technology is installed in a region, the hourly operation of these technologies, as well as the cost of each technology, are obtained within the optimization results. It is revealed that a 100 percent renewable energy system is feasible and would meet both electricity demand and hydrogen demand in Europe.


Author(s):  
Sergiy Korinnyi ◽  
Mariia Mikhailutsa ◽  
Anastasiia Bondarenko

The article examines a set of issues related to "green energy" in the world, problems and opportunities from the introduction of alternative energy sources for greening the economy, developing sustainable economy and preserving human potential. Analytical works of some Ukrainian authors have been studied, in which the current state, obstacles to the realization and prospects of "green energy" in the world have been determined. The purpose of the article is to refute the allegations about the need to immediately stop the introduction of "green technologies", including the construction of solar stations. There are two opposing views on the need for green energy, which have been being discussed around the world for the past few decades. The most popular evidence from both sides on this issue is given, in particular, that the planet can be saved only through the active use of renewable energy sources, and on the other hand, that "green energy" at the current level of human development will cause even more environmental and economic problems. The arguments most often expressed by opponents of the active introduction of "green energy" are highlighted, namely: the high cost of new technologies compared to existing types of generation; the inability of "green energy" to solve the problem of warming on the planet with reference to scientific research on the amount of CO2 emissions from different types of generation as a major factor in warming; danger to the energy systems of all countries of the world due to the instability of energy production by natural factors. Counter-arguments on these issues are provided and evidence of the ability and necessity to use clean technologies is provided. The problem, on which the opinions of both parties coincide, is highlighted - the reluctance of "green" investors to spend money on storage systems, energy storage and stabilization of energy systems due to their high cost, size, insufficient energy consumption and insufficient duration of work. It is noted that the issue of developing the latest energy storage and stabilization systems and their installation at new and existing RES stations needs to be addressed immediately, but is not an obstacle to the further development of green energy.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4812
Author(s):  
Loris Di Natale ◽  
Luca Funk ◽  
Martin Rüdisüli ◽  
Bratislav Svetozarevic ◽  
Giacomo Pareschi ◽  
...  

Energy systems are undergoing a profound transition worldwide, substituting nuclear and thermal power with intermittent renewable energy sources (RES), creating discrepancies between the production and consumption of electricity and increasing their dependence on greenhouse gas (GHG) intensive imports from neighboring energy systems. In this study, we analyze the concurrent electrification of the mobility sector and investigate the impact of electric vehicles (EVs) on energy systems with a large share of renewable energy sources. In particular, we build an optimization framework to assess how Evs could compete and interplay with other energy storage technologies to minimize GHG-intensive electricity imports, leveraging the installed Swiss reservoir and pumped hydropower plants (PHS) as examples. Controlling bidirectional EVs or reservoirs shows potential to decrease imported emissions by 33–40%, and 60% can be reached if they are controlled simultaneously and with the support of PHS facilities when solar PV panels produce a large share of electricity. However, even if vehicle-to-grid (V2G) can support the energy transition, we find that its benefits will reach their full potential well before EVs penetrate the mobility sector to a large extent and that EVs only contribute marginally to long-term energy storage. Hence, even with a widespread adoption of EVs, we cannot expect V2G to single-handedly solve the growing mismatch problem between the production and consumption of electricity.


2021 ◽  
Vol 144 (5) ◽  
Author(s):  
Paweł Ziółkowski ◽  
Natalia Szewczuk-Krypa ◽  
Anna Butterweck ◽  
Michał Stajnke ◽  
Stanisław Głuch ◽  
...  

Abstract Due to the current trends aiming to reduce carbon dioxide emissions by increasing the use of renewable energy sources, changes are required in the operation of coal-fired steam units. The unstable nature of renewable energy sources, depending on weather conditions, means that the amount of energy produced varies and is not always in line with peak demand. To ensure the security and stability of energy supplies in the energy system, renewable sources should cooperate with units independent of environmental conditions. With conventional steam systems, the main issue of such energy storage applied to steam turbine units is presented in this article, which, in the event of a need for a sudden reduction of the system load, prevents overloading of the boiler and turbines, improving the safety of the system. This article presents a thermodynamic model of this energy storage. A zero-dimensional (0D) model was implemented, including the operating parameters of the unit. This model directly relates to the thermodynamic parameters defined at specific points of the thermodynamic cycle. Based on the 0D model, it was shown that the process of loading the energy storage with steam leads to a load reduction of up to 4%. Conversely, when discharging the stored energy, the net power of the steam block may increase by 0.4%. For more detailed analysis, a three-dimensional (3D) nonequilibrium with including cross effects approach was applied. This approach is based on flow models, with phase transitions that determine temperature fields, densities, and phase transition in relevant space, and is used for more accurate analysis. Here, we investigate the relationship between the 0D and 3D approaches in the context of steam storage. The combination of these two approaches is the fundamental novelty of this article.


2019 ◽  
Vol 124 ◽  
pp. 04022
Author(s):  
O. V. Luskatova ◽  
R. A. Eyvazov ◽  
M. M. Haytanova

The impact of renewable energy sources on the national economy of the countries across the world will only increase in the near future. It is linked both with the policy of reducing the dependence on imported sources and the opportunities offered by alternative power. Having great prospects for using renewable energy sources in power generation, Turkey has been implementing coherent policy in this field. The article deals with the energy policy Republic of Turkey, analyzes its legislation, studies the trends in the alternative energy sector development as well as the current situation in the domestic power generation.


2021 ◽  
Vol 262 ◽  
pp. 01036
Author(s):  
E. Timofeev ◽  
A. Erk

The development of rural electrification is aimed at distributed energy, i.e. availability of autonomous sources of electricity and heat generation. Generation sources can use coal, fuel oil, gas, local and alternative energy sources as fuel and energy resources. This causes additional emissions of pollutants. Prediction of negative impact on the environment depends on the quantity and quality of emissions during the operation of various types of installations that generate electric and thermal energy. The purpose of the study is to select and substantiate the most attractive method for predicting the impact on the environment of generating sources in agricultural production. The widespread introduction of distributed energy using local and renewable energy sources will significantly reduce emissions of pollutants due to a decrease in energy intensity, matching the required load with the capacity of generation sources, using the most energy efficient sources, and widespread introduction of renewable energy sources. In this regard, it is advisable to forecast the impacts by the scenario method considering the implementation of the proposed distributed power supply system. The implementation of measures developed considering the analysis of the forecast of the negative impact on the environment of generating plants in agricultural enterprises will reduce the negative impact on the environment by introducing energy-efficient technologies into the energy balance of the enterprise, as well as increase production by up to 20% and increase sustainability. rural areas.


2019 ◽  
Vol 124 ◽  
pp. 04018
Author(s):  
E. A. Konnikov ◽  
K. V. Osipova ◽  
N. A. Yudina ◽  
E.P. Korsak

The energy crisis of 1973-1974 showed that it is difficult to constantly increase the power supply of production, based only on traditional energy sources. The power supply of society is the basis of its scientific and technological progress. It means that it is necessary to introduce unconventional, alternative energy sources more widely. Unlike fossil fuels, unconventional forms of energy are not limited to geologically reserves. Their use and consumption does not lead to the inevitable exhaustion of stocks. However, currently, the reform of world energy markets and increasing the share of renewable energy sources in their structure is a long and innovative process. Lots of countries (Russia in particular) bear significant risks because of reforming their own energy market, which causes a slight increase in the share of renewable energy sources. In this regard, the purpose of this study is to analyse the influence of environmental factors on the development of renewable energy sources in Russia. The result of this study is a system of econometric equations, which allows to evaluate the impact of changes in key drivers of the development of the renewable energy market.


2020 ◽  
Vol 4 (3) ◽  
pp. 366-369
Author(s):  
Inniyaka Irmiya ◽  
Ibrahim Ibrahim ◽  
Ibrahim Hussain

Depleting oil reserves and environmental concerns on emission have heightened the search for alternative energy sources and efficient electrochemical energy systems through renewable energy sources. Technological advancements in the field of automation, robotics, communication, nanotechnology, electrification and hybridization of vehicles as well as the push for renewable energy sources have broadened the scope of opportunities for Electrochemical Energy Storage Systems (ESS). These new technologies place a growing demand on compact, safe and higher capacity batteries to enable functionality. Battery technology for different needs and application have become an indispensable aspect of sustainable development in the quest for renewable energy and global sustainable carbon emission reduction. This paper briefly looks at the integrated nature of batteries to human day to day activities, the current state and impact of battery technology, future of energy storage systems and an analysis of battery storage systems for sustainable industrialization.


2021 ◽  
Author(s):  
Aleksander Wasiuta

Abstract BackgroundThe characteristic feature of modern energy sector in the EU is the development of environmentally friendly technologies based on renewable energy sources (RES). The use of alternative and RES contributes to resolving not only energy efficiency issues, but many of the environmental, economic and social problems. RES are also one of the priorities of the world's low carbon policy and reducing CO2 emissions into the atmosphere. Growing electrical energy consumption and increasing integration of RES in power systems have led to new challenges, thus it is required to investigate and properly analyze the impact of integrated RES on the power system as a substitute for fossil fuel resources.ResultsThe aim of the article is to show the possibilities of developing RES in Poland in the context of environmental protection, energy self-sufficiency and international obligations. The depletion of primary energy sources and the increase in emissions of greenhouse gases to the atmosphere forces undertaking certain activities, aimed at seeking substitutes for fossil fuels. According to the author’s analysis, RES are the best and safest substitutes for traditional energy resources such as fossil fuel.ConclusionsThe author examines electricity production mix in EU counties and compares it to Polish energy sector. Taking into consideration the transmission network density in Poland, while energy sector changes its structure and expands, the mix of technologies deployed to produce electricity determines the associated burden on transmission networks. Polish energy sector development in the context of modernization of transmission grid provides an opportunity for investors to prepare the energy system for increasing the share of renewable energy sources. In the process of implementing the appropriate solution, the experiences of other countries that have significantly increased the share of renewable energy in the past could be used. This article presents the main areas of action that may facilitate the further integration of different energy sources in the specific context of Poland's changing energy system. Not all integration options will be important for Poland at the same time.


Sign in / Sign up

Export Citation Format

Share Document