scholarly journals Quantifying Total Environmental Impact of the Power Sector Using Input-Output Life Cycle Assessment: a case study for Thailand

2019 ◽  
Vol 122 ◽  
pp. 05003
Author(s):  
Isara Muangthai ◽  
Sue J. Lin

The electricity generation is vital to industries and economic development in Thailand. In this study, the input-output life cycle assessment (IO-LCA) is applied to estimate the direct and indirect impacts from the power generation sector for the years 2005 and 2010. Based on the input-output analysis, more than 90% of the total environmental impact of Thailandʼs power sector involves ten relevant sectors. Results reveal that the most significant environmental damage was on natural resources followed by human health, climate change, and ecosystem quality. The most dominant environmental impacts were non-renewable energy, global warming and respiratory inorganic effects. Furthermore, the power sector, which accounts for 80% and 61% of total each impact in 2010 respectively, had a large direct impact on climate change and human health. On the contrary, the coal and lignite, and metal ore sectors contributed significantly to indirect impacts on ecosystem quality and resources. Regarding the results, some additional suggestions can be made to improve current policies in Thailand, including the implementation of green manufacturing in the iron and steel production, and installing control devices in all power plant units. Consequently, IO-LCA can be applied to other industries for assessing their total environmental impacts, and planning CO2 mitigation strategies.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Huimin Liu ◽  
Qiqiang Li ◽  
Guanguan Li ◽  
Ran Ding

The steel industry is facing problems such as serious environmental pollution and high resource consumption. At the same time, it lacks effective methods to quantify potential environmental impacts. The purpose of this work is to conduct a specific environmental analysis of steelmaking production in steel plants. The ultimate goal is to discover the main pollution of steelmaking and identify potential options for improving the environment. This paper uses life cycle assessment method to carry out inventory and quantitative analysis on the environmental impact of steelmaking system. Through analysis, the hazards are divided into four major categories, which are human health, climate change, ecosystem quality, and resources. The results show that molten iron has the greatest impact on human health, followed by the greatest impact on resources. The impact of scrap steel on human health ranks third. Molten iron is a key process that affects human health, climate change, ecosystems quality, and resources. In addition, processes such as fuels, working fluids, and auxiliary materials also cause certain environmental damage, accounting for a relatively small proportion. Optimizing the utilization of scrap steel and molten iron resources and improving the utilization efficiency of resources and energy are helpful to reduce the environmental hazards of steelmaking system.


2020 ◽  
Vol 15 (8) ◽  
pp. 1157-1168
Author(s):  
Le Quyen Luu ◽  
Sonia Longo ◽  
Maurizio Cellura ◽  
Eleonora Riva Sanseverino

The existing policy for greenhouse gas (GHG) abatement aims at decarbonisation of the power sector. The interrelations between the power sector and other economic sectors raise a question of whether the GHG emission reduction policy in the power sector is as effective as it is claimed. Consequential life cycle assessment (CLCA) has been developed to assess the environmental impacts of any industrial/productive sector in relation with changes in the policy and its indirect impacts on other economic sectors. This review is conducted on CLCA studies in the power sector in terms of system boundaries expansion and socio-economic interactions and the ability to quantify indirect environmental impacts. It is indicated that CLCA expanded the system boundaries by applying mutatis mutandis assumption to include several affected products with various scales of change. Economic modelling tools are frequently applied to make assumptions on the extent of change. The applications of these tools also help to identify the environmental profile of product systems and the socio-economic changes such as economic growth and consumer behaviours. Thanks for the expansion of system boundaries and inclusion of socio-economic interactions, the total environmental impacts of power sector are comprehensively quantified. The variations of the total environmental impacts, with different magnitude of change, were observed in several reviewed case studies. In term of GHG emissions, some products become cleaner, for example battery; however, in most of the cases, the power system in general becomes more polluted when indirect impacts on other economic sectors are included.


2019 ◽  
Vol 54 (7) ◽  
pp. 668-678 ◽  
Author(s):  
Ramiro Meza-Palacios ◽  
Alberto A. Aguilar-Lasserre ◽  
Luis F. Morales-Mendoza ◽  
Jorge R. Pérez-Gallardo ◽  
José O. Rico-Contreras ◽  
...  

2011 ◽  
Vol 4 (4) ◽  
pp. 123-136 ◽  
Author(s):  
Aldemar Martinez-Gonzalez ◽  
Oscar-Mauricio Casas-Leuro ◽  
Julia-Raquel Acero-Reyes ◽  
Edgar-Fernando Castillo-Monroy

This paper provides a comparative analysis using the concept of life cycle assessment (LCA), between high-sulfur (3000 ppm) and low-sulfur diesel (500 ppm) diesel. The comparative LCA considers the stages of production, transport and oil refining , as well as the transport of refined products and their respective end use. This last stage of the life cycle is important for the analysis of potential environmental impacts, due to sulfur oxide (SOx) emissions, which contribute to the formation of acid rain, damage air quality and the ecosystem (land and water acidification), causing gradual damage to human health and the environment. Therefore, comparative LCA identifies critical points from the environmental perspective, weighing the contributions of pollutants (NO2, CH4 and CO2) known as greenhouse gases (GHG) and criteria pollutants (CO, SOX, NOX, VOC's and PM). Simapro 7.2® was used to simulate and evaluate potential environmental impacts generated during the production and use by end consumers of the two fossil fuels. In order to evaluate the impact categories, two methods available in said calculation tool were selected: the first is the IPCC-2007 (GWP-100years), which estimates the carbon footprint and the contributions of each stage of the production chain to the "Global Warming" effect. The second method of evaluation is the Impact 2002+, which assesses the various contributions to the categories of toxicity to "Human Health", "Ecosystem Quality", "Climate Change" and "Depletion of Natural Resources". Thus, the preliminary results of comparative LCA show a slight increase in the carbon footprint (total emissions of CO2 equivalent in the productive chain) of low-sulfur diesel, approximately 3.8% compared to high-sulfur diesel, as a result of the increased emissions generated by the operation of the hydrogenation plant. However, low-sulfur diesel achieves a significant reduction of about 80% in comparison with high-sulfur diesel, in terms of damage to "Human Health" and "Ecosystem Quality". On the contrary, there was an increase of 2% and 6% in the categories of "Climate Change" and "Depletion of Natural Resources", respectively. Finally, despite the minor increase in the carbon footprint, although with remarkable reductions in "Ecosystem Quality" and "Human Health", the production and use of low-sulfur diesel has a single score of environmental impact equivalent to 0.23 milli points (mPt) compared to the single score obtained by high-sulfur diesel of 1.23 (mPt).


2021 ◽  
Vol 13 (5) ◽  
pp. 2898
Author(s):  
Rakhyun Kim ◽  
Myung-Kwan Lim ◽  
Seungjun Roh ◽  
Won-Jun Park

This study analyzed the characteristics of the environmental impacts of apartment buildings, a typical housing type in South Korea, as part of a research project supporting the streamlined life cycle assessment (S-LCA) of buildings within the G-SEED (Green Standard for Energy and Environmental Design) framework. Three recently built apartment building complexes were chosen as study objects for the quantitative evaluation of the buildings in terms of their embodied environmental impacts (global warming potential, acidification potential, eutrophication potential, ozone layer depletion potential, photochemical oxidant creation potential, and abiotic depletion potential), using the LCA approach. Additionally, we analyzed the emission trends according to the cut-off criteria of the six environmental impact categories by performing an S-LCA with cut-off criteria 90–99% of the cumulative weight percentile. Consequently, we were able to present the cut-off criterion best suited for S-LCA and analyze the effect of the cut-off criteria on the environmental impact analysis results. A comprehensive environmental impact analysis of the characteristics of the six environmental impact categories revealed that the error rate was below 5% when the cut-off criterion of 97.5% of the cumulative weight percentile was applied, thus verifying its validity as the optimal cut-off criterion for S-LCA.


2016 ◽  
Vol 106 (03) ◽  
pp. 136-140
Author(s):  
R. Miehe ◽  
M. Wiedenmann ◽  
T. Prof. Bauernhansl

Die Ökobilanz hat sich als Instrument zur Bewertung der Umweltauswirkungen von Produkten und Prozessen durchgesetzt. Dennoch stellt ihre Durchführung Nutzer immer wieder vor Herausforderungen. Der Fachartikel präsentiert einen Ansatz für eine vergleichende Betrachtung der ökologischen Auswirkungen des unternehmerischen Handelns auf Basis der jeweiligen Unternehmens- und Branchenumsätze. Der Umsatz-Nachhaltigkeitsindex soll als Konzept für ein Benchmark für Unternehmen einer Branche dienen.   Life Cycle Assessment has prevailed as an instrument to evaluate the environmental impact of products and processes. Its execution, however, poses a challenge to operators. In this paper, we present an approach for a comparative examination of environmental impacts of industrial behavior based on the turnover of companies and their equivalent sectors. The Turnover-Sustainability-Index serves as a benchmark for companies within a sector.


2021 ◽  
Vol 12 (5) ◽  
pp. 6504-6515

With the development of additive manufacturing technology, 3D bone tissue engineering scaffolds have evolved. Bone tissue engineering is one of the techniques for repairing bone abnormalities caused by a variety of circumstances, such as injuries or the need to support damaged sections. Many bits of research have gone towards developing 3D bone tissue engineering scaffolds all across the world. The assessment of the environmental impact, on the other hand, has received less attention. As a result, the focus of this study is on developing a life cycle assessment (LCA) model for 3D bone tissue engineering scaffolds and evaluating potential environmental impacts. One of the methodologies to evaluating a complete environmental impact assessment is life cycle assessment (LCA). The cradle-to-grave method will be used in this study, and GaBi software was used to create the analysis for this study. Previous research on 3D bone tissue engineering fabrication employing poly(ethylene glycol) diacrylate (PEGDA) soaked in dimethyl sulfoxide (DMSO), and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) as a photoinitiator will be reviewed. Meanwhile, digital light processing (DLP) 3D printing is employed as the production technique. The GaBi program and the LCA model developed to highlight the potential environmental impact. This study shows how the input and output of LCA of 3D bone tissue engineering scaffolds might contribute to environmental issues such as air, freshwater, saltwater, and industrial soil emissions. The emission contributing to potential environmental impacts comes from life cycle input, electricity and transportation consumption, manufacturing process, and material resources. The results from this research can be used as an indicator for the researcher to take the impact of the development of 3D bone tissue engineering on the environment seriously.


2021 ◽  
Author(s):  
András Polgár ◽  
Karolina Horváth ◽  
Imre Mészáros ◽  
Adrienn Horváth ◽  
András Bidló ◽  
...  

<p>Crop production is applied on about half of Hungary’s land area, which amounts to approximately 4.5 million hectares. The agricultural activity has significant environmental impacts.</p><p>Our work aims the time series investigation of the impacts of large-scale agricultural cultivation<strong> </strong>on environment and primarily on climate change in<strong> </strong>the test area by applying environmental life cycle assessment (LCA) method.</p><p>The investigated area of Lajta Project can be found in the triangle formed by the settlements Mosonszolnok, Jánossomorja and Várbalog, in the north-western corner of Hungary, in Győr-Moson-Sopron county. The area has intense agri-environment characteristics, almost entirely lacking of grasslands and meadows.</p><p>We were looking for the answer to the question “To what extent does agricultural activity on this area impact the environment and how can it contribute to climate change during a given period?” The selection of the plants included in the analysis was justified by their significant growing area. We analysed the cultivation data of 5 crops: canola, winter barley, winter wheat, green maize and maize. Material flows of arable crop production technologies were defined in time series by the agricultural parcel register data. These covered the size of the area actually cultivated, the operational processes, records on seeds, fertilizer and pesticide use and harvest data by parcels. The examined environmental inventory database contained also the fuel consumption and lubricating oil usage of machine operations, and the water usage of chemical utilization.</p><p>In the life cycle modelling of cultivation, we examined 13 years of maize, 20 years of green maize, 20 years of winter barley, 18 years of winter wheat and 15 years of canola data calculated on 1 ha unit using GaBi life cycle analysis software.</p><p>In addition, we also calculated by an average cultivation model for all cultivated plants with reference data to 1 ha and 1 year period.</p><p>We applied methods and models in our life cycle impact assessment. According to the values of the impact categories, we set up the following increasing environmental ranking of plant cultivation: (1) canola has minimum environmental impacts followed by (2) green maize and (3) maize with slightly higher values, (4) winter barley has 6 times higher values preceded by (5) winter wheat with a slight difference. The previous environmental ranking of the specific cultivated plants’ contribution was also confirmed as regards the overall environmental impact: canola (1.0%) – green maize (4.9%) – maize (7.1%) – winter barley (43.1%) – winter wheat (44.0%).</p><p>Environmental impact category indicator results cumulated to total cultivation periods and total crop growing areas (quantitative approach) display the specific environmental footprints by crops. Increasing environmental ranking of environmental impacts resulted from cultivating the sample area is the following: (1) canola – (2) maize – (3) green maize – (4) winter barley – (5) winter wheat. The slight difference resulted in the rankings in quantitative approach according to the rankings of territorial approach on the investigated area is due to the diversity of cultivation time factor and the crop-growing parameter of the specific crops.</p><p>Acknowledgement: Our research was supported by the „Lajta-Project”.</p>


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6508
Author(s):  
Mona Kabus ◽  
Lars Nolting ◽  
Benedict J. Mortimer ◽  
Jan C. Koj ◽  
Wilhelm Kuckshinrichs ◽  
...  

We investigate the environmental impacts of on-board (based on alternating current, AC) and off-board (based on direct current, DC) charging concepts for electric vehicles using Life Cycle Assessment and considering a maximum charging power of 22 kW (AC) and 50 kW (DC). Our results show that the manufacturing of chargers provokes the highest contribution to environmental impacts of the production phase. Within the chargers, the filters could be identified as main polluters for all power levels. When comparing the results on a system level, the DC system causes less environmental impact than the AC system in all impact categories. In our diffusion scenarios for electric vehicles, annual emission reductions of up to 35 million kg CO2-eq. could be achieved when the DC system is used instead of the AC system. In addition to the environmental assessment, we examine economic effects. Here, we find annual savings of up to 8.5 million euros, when the DC system is used instead of the AC system.


2021 ◽  
Author(s):  
Kristína Kováčiková ◽  
◽  
Antonín Kazda

The paper is focused on the assessment of the environmental impacts of transport infrastructure and individual types of transport using the life cycle assessment method. The paper contains a description of the basic terminology of the problem related to transport, the environment and methods of environmental impact assessment. The paper contains analysis on monitoring carbon dioxide emissions from a global perspective as well as from a regional perspective focused on Slovakia. The aim of the paper is to create a proposal for the assessment of environmental impacts of transport infrastructure, in the form of specification of areas of assessment for selected types of transport with a focus on carbon dioxide emissions. Using the knowledge and principles of the life cycle method, a proposal for relevant indicators and a proposal for a comprehensive assessment of the impacts of selected types of transport, focused on carbon dioxide emissions, is created in the paper


Sign in / Sign up

Export Citation Format

Share Document