scholarly journals The criteria for evaluation of efficiency of heat technical installations considering general energy costs with the aim of increasing their environmental friendliness and reducing negative effect on the environment

2019 ◽  
Vol 140 ◽  
pp. 08010
Author(s):  
Alexander Kulikov ◽  
Irena Ivanova ◽  
Irina Russkova ◽  
Jaromír Veber

The features of the physical meaning of the thermal coefficient useful action (CUA) ηt as a criterion for the efficiency of reversible direct circular processes are considered. In particular, we demonstrate that accounting for all energy costs when applying ηt is made by adopting a number of assumptions by default. In order to expand the possibilities for conducting thermodynamic assessments of the efficiency of various thermal power plants, a new criterion of efficiency Ku is proposed as a coefficient that takes into account in a comparable form all types of energy spent on the implementation of the cycle. In determining the criterion Ku, useful effect obtained from the implementation of a direct circular process is considered to be the specific work of the expansion of the working fluid in the cycle. Such work, in particular, can be the work of steam expansion in the turbine. The total energy cost is the sum of the specific heat supplied to the working body in a circular process and the specific mechanical work spent in the cycle on compression and pressure increase of the working body. In particular, the work is taken into account in a comparable form-taking into account the heat that was spent on its production. The analysis of the Ku criterion is carried out. As a result of the analysis we have established that at transition from the general physical model of reception of specific work of expansion in direct circular process for which Ku criterion can be applied, to the special case assuming a number of assumptions, Ku criterion can become equal to thermal coefficient useful action of a cycle. Using the Ku criterion, the efficiency of Carnot and Rankine cycles on a saturated pair is compared. The Ku score showed that the Rankine cycle was more efficient.

Author(s):  
Igor L. Pioro

Supercritical Fluids (SCFs) have unique thermophyscial properties and heat-transfer characteristics, which make them very attractive for use in power industry. In this chapter, specifics of thermophysical properties and heat transfer of SCFs such as water, carbon dioxide, and helium are considered and discussed. Also, particularities of heat transfer at Supercritical Pressures (SCPs) are presented, and the most accurate heat-transfer correlations are listed. Supercritical Water (SCW) is widely used as the working fluid in the SCP Rankine “steam”-turbine cycle in fossil-fuel thermal power plants. This increase in thermal efficiency is possible by application of high-temperature reactors and power cycles. Currently, six concepts of Generation-IV reactors are being developed, with coolant outlet temperatures of 500°C~1000°C. SCFs will be used as coolants (helium in GFRs and VHTRs, and SCW in SCWRs) and/or working fluids in power cycles (helium, mixture of nitrogen (80%) and helium (20%), nitrogen and carbon dioxide in Brayton gas-turbine cycles, and SCW/“steam” in Rankine cycle).


Author(s):  
Igor Pioro ◽  
Mohammed Mahdi ◽  
Roman Popov

SuperCritical Fluids (SCFs) have unique thermophyscial properties and heat-transfer characteristics, which make them very attractive for use in power industry. In this chapter, specifics of thermophysical properties and heat transfer of SCFs such as water, carbon dioxide and helium are considered and discussed. Also, particularities of heat transfer at SuperCritical Pressures (SCPs) are presented, and the most accurate heat-transfer correlations are listed. SuperCritical Water (SCW) is widely used as the working fluid in the SCP Rankine “steam”-turbine cycle in fossil-fuel thermal power plants. This increase in thermal efficiency is possible by application of high-temperature reactors and power cycles. Currently, six concepts of Generation-IV reactors are being developed, with coolant outlet temperatures of 500°C~1000°C. SCFs will be used as coolants (helium in GFRs and VHTRs; and SCW in SCWRs) and/or working fluids in power cycles (helium; mixture of nitrogen (80%) and helium [20%]; nitrogen, and carbon dioxide in Brayton gas-turbine cycles; and SCW “steam” in Rankine cycle).


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7136
Author(s):  
Andrey Rogalev ◽  
Vladimir Kindra ◽  
Ivan Komarov ◽  
Sergey Osipov ◽  
Olga Zlyvko

The Rankine cycle is widely used for electricity production. Significant weight and size characteristics of the power equipment working on superheated steam are the main disadvantages of such power plants. The transition to supercritical carbon dioxide (S-CO2) working fluid is a promising way to achieve a significant reduction in equipment metal consumption and to increase energy efficiency. This paper presents the results of thermodynamic analysis of S-CO2 thermal power plants (TPPs) utilizing the heat of combustion products of an energy boiler. It was found that the net efficiency of the developed S-CO2 TPP with a pulverized coal-fired boiler reached 49.2% at an initial temperature of 780 °C, which was 2% higher compared to the efficiency level of steam turbine power plants (STPPs) at a similar turbine inlet temperature.


2021 ◽  
pp. 40-47
Author(s):  
Андрій Миколайович Радченко ◽  
Дмитро Вікторович Коновалов ◽  
Сергій Георгійович Фордуй ◽  
Роман Миколайович Радченко ◽  
Сергій Анатолійович Кантор ◽  
...  

Modern heat-using ejector refrigeration machines used in heat recovery systems for power plants based on gas turbine engines and internal combustion engines have many advantages over absorption refrigeration machines: smaller dimensions and weight; the ability to obtain lower temperatures. However, they are inferior in energy efficiency, and the thermal coefficient is much lower and can be 0.2…0.4. The efficiency of such refrigeration machines largely depends on the choice of the working fluid (refrigerant). Hence the need to choose a refrigerant that would provide the maximum heat factor, and hence the maximum efficiency of heat recovery. Given the relatively low efficiency of the ejector refrigeration machine, the search for a working fluid that will provide, on the one hand, higher thermal coefficients, and on the other hand high environmental friendliness, is one of the promising areas of development of heat recovery technologies in power plants. The study used the software complex developed by the authors to calculate the refrigeration cycles of heat-using refrigeration machines, taking into account the properties of many modern refrigerants, ejector characteristics, as well as basic heat exchangers (condenser, evaporator, generator). The efficiency of ejector refrigeration machines when working on the following working bodies was analyzed: R142b, R134a, R600, R600a, R1234ze(E), R1233zd(E), R1234yf, R227ea, R236fa, R245fa. R142b, R600, R600a, R245fa have the largest values of thermal coefficients. It is established that the most profitable in terms of environmental friendliness (ODP, GWP) and energy efficiency is the use of refrigerant R245fa, which has a condensation temperature range is 25…35 oC and boiling in the evaporator is 0…15 oC thermal coefficient is 0.40…1.03.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4328
Author(s):  
Young-Min Kim ◽  
Assmelash Negash ◽  
Syed Safeer Mehdi Shamsi ◽  
Dong-Gil Shin ◽  
Gyubaek Cho

Fossil fuel power plants can cause numerous environmental issues, owing to exhaust emissions and substantial water consumption. In a thermal power plant, heat and water recovery from flue gas can reduce CO2 emissions and water demand. High-humidity flue gas averts the diffusion of pollutants, enhances the secondary transformation of air pollutants, and leads to smog weather; hence, water recovery from flue gas can also help to lessen the incidence of white plumes and smog near and around the power plant. In this study, a lab-scale system for heat and water recovery from flue gas was tested. The flue gas was initially cooled by an organic Rankine cycle (ORC) system to produce power. This gas was further cooled by an aftercooler, using the same working fluid to condense the water and condensable particulate matter in the flue gas. The ORC system can produce approximately 220 W of additional power from flue gas at 140 °C, with a thermal efficiency of 10%. By cooling the flue gas below 30–40 °C, the aftercooler can recover 60% of the water in it.


2013 ◽  
Vol 597 ◽  
pp. 45-50
Author(s):  
Sławomir Smoleń ◽  
Hendrik Boertz

One of the key challenges on the area of energy engineering is the system development for increasing the efficiency of primary energy conversion and use. An effective and important measure suitable for improving efficiencies of existing applications and allowing the extraction of energy from previously unsuitable sources is the Organic Rankine Cycle. Applications based on this cycle allow the use of low temperature energy sources such as waste heat from industrial applications, geothermal sources, biomass, fired power plants and micro combined heat and power systems.Working fluid selection is a major step in designing heat recovery systems based on the Organic Rankine Cycle. Within the framework of the previous original study a special tool has been elaborated in order to compare the influence of different working fluids on performance of an ORC heat recovery power plant installation. A database of a number of organic fluids has been developed. The elaborated tool should create a support by choosing an optimal working fluid for special applications and become a part of a bigger optimization procedure by different frame conditions. The main sorting criterion for the fluids is the system efficiency (resulting from the thermo-physical characteristics) and beyond that the date base contains additional information and criteria, which have to be taken into account, like environmental characteristics for safety and practical considerations.The presented work focuses on the calculation and optimization procedure related to the coupling heat source – ORC cycle. This interface is (or can be) a big source of energy but especially exergy losses. That is why the optimization of the heat transfer between the heat source and the process is (besides the ORC efficiency) of essential importance for the total system efficiency.Within the presented work the general calculation approach and some representative calculation results have been given. This procedure is a part of a complex procedure and program for Working Fluid Selection for Organic Rankine Cycle Applied to Heat Recovery Systems.


Author(s):  
Mahshid Vatani ◽  
Masoud Ziabasharhagh ◽  
Shayan Amiri

With the progress of technologies, engineers try to evaluate new and applicable ways to get high possible amount of energy from renewable resources, especially in geothermal power plants. One of the newest techniques is combining different types of geothermal cycles to decrease wastage of the energy. In the present article, thermodynamic optimization of different flash-binary geothermal power plants is studied to get maximum efficiency. The cycles studied in this paper are single and double flash-binary geothermal power plants of basic Organic Rankine Cycle (ORC), regenerative ORC and ORC with an Internal Heat Exchanger (IHE). The main gain due to using various types of ORC cycles is to determine the best and efficient type of the Rankine cycle for combined flash-binary geothermal power plants. Furthermore, in binary cycles choosing the best and practical working fluid is an important factor. Hence three different types of working fluids have been used to find the best one that gives maximum thermal and exergy efficiency of combined flash-binary geothermal power plants. According to results, the maximum thermal and exergy efficiencies both achieved in ORC with an IHE and the effective working fluid is R123.


2007 ◽  
Vol 129 (4) ◽  
pp. 355-362 ◽  
Author(s):  
A. McMahan ◽  
S. A. Klein ◽  
D. T. Reindl

Fundamental differences between the optimization strategies for power cycles used in “traditional” and solar-thermal power plants are identified using principles of finite-time thermodynamics. Optimal operating efficiencies for the power cycles in traditional and solar-thermal power plants are derived. In solar-thermal power plants, the added capital cost of a collector field shifts the optimum power cycle operating point to a higher-cycle efficiency when compared to a traditional plant. A model and method for optimizing the thermoeconomic performance of solar-thermal power plants based on the finite-time analysis is presented. The method is demonstrated by optimizing an existing organic Rankine cycle design for use with solar-thermal input. The net investment ratio (capital cost to net power) is improved by 17%, indicating the presence of opportunities for further optimization in some current solar-thermal designs.


2002 ◽  
Vol 124 (2) ◽  
pp. 395-403 ◽  
Author(s):  
J. Hoffren ◽  
T. Talonpoika ◽  
J. Larjola ◽  
T. Siikonen

In small Rankine cycle power plants, it is advantageous to use organic media as the working fluid. A low-cost single-stage turbine design together with the high molecular weight of the fluid leads to high Mach numbers in the turbine. Turbine efficiency can be improved significantly by using an iterative design procedure based on an accurate CFD simulation of the flow. For this purpose, an existing Navier-Stokes solver is tailored for real gas, because the expansion of an organic fluid cannot be described with ideal gas equations. The proposed simulation method is applied for the calculation of supersonic flow in a turbine stator. The main contribution of the paper is to demonstrate how a typical ideal-gas CFD code can be adapted for real gases in a very general, fast, and robust manner.


Sign in / Sign up

Export Citation Format

Share Document