scholarly journals Finite Element Analysis of Anchor Leg Improved Trough Embedded Parts Based on ABAQUS

2019 ◽  
Vol 79 ◽  
pp. 01010
Author(s):  
Xin Huang ◽  
Yunfan Gu ◽  
Baocun Shi ◽  
Xin Chen ◽  
Wei Jiang

Reasonable and accurate simulations of failure behaviors of steel-concrete composite members with trough embedded parts is of great significance for the study of joint failure mechanism of prefabricated components in assembled buildings. Based on the implicit solution module of ABAQUS, the anchor legs of 5234 trough embedded parts are redesigned. The cylindrical anchor legs are designed as anchor plates with different diameter holes. The finite element model of the anchor leg of improved 5234 trough embedded parts and that of concrete are established. The mechanical properties of the specimens under bending and shear failure are simulated. And take a research on the improved trough embedded parts. The results show that the ultimate stress of concrete and the ultimate stress of embedded parts decrease first, then increase and then decrease with the increase of the diameter of circular hole, and the displacement of anchor leg of embedded parts decreases first and then increases with the increase of the diameter of circular hole. When the diameter of circular hole is 10.0 mm, the ultimate stress of concrete, the ultimate stress of embedded parts and the displacement of anchor leg are the smallest, and the mechanical properties of embedded parts are improved the most.

2010 ◽  
Vol 102-104 ◽  
pp. 17-21
Author(s):  
Bin Zhao

In order to study the static and dynamical characteristics of the crankshaft, ANSYS software was used to carry out the corresponding calculations. The entity model of the crankshaft was established by UG software firstly, and then was imported into ANSYS software for meshing, and then the finite element model of the crankshaft was constructed. The crankshaft satisfied the requirement of stiffness and strength through static analysis. The top six natural frequencies and corresponding shapes were acquired through modal analysis, and the every order critical rotating speed of the crankshaft was calculated. The fatigue life of the crank was calculated by fatigue module of ANSYS software finally. These results offered the theoretical guidance for designing, manufacturing and repairing the crankshaft.


1999 ◽  
Author(s):  
Richard B. Englund ◽  
David H. Johnson ◽  
Shannon K. Sweeney

Abstract A finite element analysis (FEA) model of the interaction of a nut and bolt was used to investigate the effects of sliding, friction, and yielding in a bolted connection. The finite element model was developed as a two-dimensional, axisymmetric system, which allowed the study of axial and radial loading and displacements. This model did not permit evaluation of hoop or torsional effects such as tightening or the helical thread form. Results presented in this paper include the distribution of load between consecutive threads, the relative sliding along thread faces, and the stress distribution and regions of yielding in the model. Finally, a comparison to previous, linear analysis work and to published experimental data is made to conclude the paper.


2014 ◽  
Vol 945-949 ◽  
pp. 1143-1149
Author(s):  
Hai Xia Sun ◽  
Hua Kai Wei ◽  
Xiao Fang Zhao ◽  
Jia Rui Qi

The finite element model of the concrete mixing truck’s frame is builded by using shell as basic element, and the process of building the finite element model of the balance suspension is introduced in detail. Based on this, frame’s stress on five types of typical operating conditions are calculated by using the finite element analysis software, NASTRAN, and results can show the dangerous position and the maximum stress position on the frame. The analysis result on structural strength can provide the basis for further improving the frame structure.


2018 ◽  
Vol 777 ◽  
pp. 416-420
Author(s):  
Juthanee Phromjan ◽  
Chakrit Suvanjumrat

The natural rubber compound of each layer of solid tire had determined the mechanical properties in tension. It was found that the stress-strain relation of each material tire layer was fitted very well with the Ogden constitutive model. The R2 which was 0.986, 0.996 and 0.985 represented the certain curve fitting on the internal, middle and tread layer of solid tire, respectively. Subsequently, the Ogden model was implemented in the finite element model of the rubber specimen and solid tire. The finite element analysis results obtained an average error of 18.00% and 14.63% for the specimen and solid tire model by comparing to the physical experiment, respectively. Particularly, the mechanical properties of the natural compounds could be used to predict the ultimate compression load for the solid tire failure.


2011 ◽  
Vol 117-119 ◽  
pp. 1535-1542 ◽  
Author(s):  
Hua Wei Zhang ◽  
Wei Xia ◽  
Zhi Heng Wu

In this paper, the clamping unit of a two-platen injection molding machine was modeled by Pro/ENGINEER, and was imported to Altair HyperWorks. In HyperMesh module, the finite element model was set up, ANSYS has been used in the finite element analysis of the clamping unit and the deformation and stress results were obtained. Based on the topology optimization of HyperWorks/OptiStruct, recommendations to improve the structure of the clamping mechanism are presented; the results showed that less material was used while its performance was maintained.


2015 ◽  
Vol 733 ◽  
pp. 591-594
Author(s):  
Yong Zhen Zhu ◽  
Kuo Yang ◽  
Qi Yang ◽  
Yun De Zhao

The CAD software was used to establish 3D model of frame of dump truck, and the finite element model was established through Hyper Mesh. The stress distributions of the frame in vertical accelerating, turning, twisting and climbing conditions were computed through finite element software when the dump truck was loaded 80t. The result is consistent with the actual situation of the frame, which proved that the approach of finite element analysis is feasible. And we proposed the improved method of the frame according to finite element results.


2011 ◽  
Vol 368-373 ◽  
pp. 1125-1129
Author(s):  
Chang Jiang Liu ◽  
Jin Long Wang

The finite element model about greenhouse canopy of seismic analysis was setted up, The finite element analysis software ANSYS was used to study structure displacement, stress analysis on greenhouse shed. The results showed that the dangerous part of the canopy were located on upper chord members,lower chord members, web members of the framework and the lower and upper, the inside of both sides of the wall with seismic load.Corresponding to this results ,the main destroied form were the framework damage caused by the bending deformation of upper chord members, lower chord members and the upper web members and the unstability caused by the distortion of both sides of the wall.


2011 ◽  
Vol 201-203 ◽  
pp. 253-256 ◽  
Author(s):  
Zhi Peng Lv ◽  
Si Zhu Zhou ◽  
Xiu Hua Ma

According to the plunger pump movement principle, this paper analyzed the two kind of typical force situation of the crosshead, and obtained the theoretical maximum force. Established the finite element model of the crosshead, gave an analysis to the load handling and boundary condition. The last results of the node stress and displacement show that the crosshead can work safely.


2016 ◽  
Vol 16 (08) ◽  
pp. 1550049 ◽  
Author(s):  
Fatih Altunel ◽  
Mehmet Çelik ◽  
Mehmet Çalişkan

This study proposes a new correlation improvement technique for the optimum node removal location to get improved modal assurance criterion (MAC) matrix. The technique is applied to updating of the finite element model (FEM) of a structure. The developed routine is tried on a utility helicopter. It is proven that it is capable of showing better performance than the coordinate MAC (coMAC), commonly used in such analyses. Commercial software is utilized for the finite element analysis of the helicopter fuselage and tail. Experimental modal analyses are also performed for updating the model for tail of the helicopter to demonstrate the effectiveness of the new technique.


Sign in / Sign up

Export Citation Format

Share Document