scholarly journals Laboratory investigation of interface shearing in chalk

2019 ◽  
Vol 92 ◽  
pp. 13009 ◽  
Author(s):  
Derek L.H. Chan ◽  
Róisín M. Buckley ◽  
Tingfa Liu ◽  
Richard J. Jardine

Chalk, a soft fine-grained Cretaceous limestone, is encountered across northern Europe where recent offshore windfarm, oil, gas and onshore developments have called for better foundation design methods, particularly for driven piles whose shaft capacities are controlled by an effective stress Coulomb interface failure criterion. Interface type and roughness is known to affect both interface friction angles, δ′ and the magnitude of dilation required for shaft failure to develop. Site-specific interface ring-shear tests are recommended for offshore pile design in sands and clays to account for driven pile shaft materials, roughnesses and shear displacements. However, few such tests have been reported for chalks and it is also unclear whether δ′ angle changes contribute to the striking axial capacity increases, or set-up, noted over time with piles driven in chalk. This paper describes an interface shear study on low-to-medium density chalk from the St. Nicholas-at-Wade research test site in Kent, UK, where extensive field driven pile studies have been conducted [1, 2]. Direct shear and Bishop ring shear apparatus were employed to investigate the influences of interface material and surface roughness, as well as ageing under constant normal effective stresses (σn'). It is shown that the high relative roughness of the interface compared to the chalk grain size results in the ultimate interface shearing angles falling close to the chalk-chalk shearing resistance angles. The δ′ angles also increased by up to 5° over 38 days of ageing.

Author(s):  
Thi Minh Hue Le ◽  
Gudmund Reidar Eiksund ◽  
Pål Johannes Strøm

For offshore foundations, the residual shear strength is an important soil parameter for the evaluation of installation resistance and axial pile capacity (for jacket foundation). Estimation of residual shear strength can be conducted in a shear box test in the conventional way, or with the introduction of an interface to evaluate the change in residual shear strength under influence of friction between soil and the interface. In addition, the residual effective friction angle can be measured in the ring shear test using the Bromhead apparatus. In this study, the three above-mentioned methods are employed to estimate the values of residual shear strength of two soil units: the Swarte Bank Formation and the Chalk Unit sampled from the Sheringham Shoal offshore wind farms. The Swarte Bank Formation is dominated by heavily over-consolidated stiff clay, while the Chalk Unit is characterized by putty white chalk which behaves in a similar manner to stiff clay if weathered, or to soft rock if unweathered. These soil units are located at the bottom of the soil profile at the Sheringham Shoal wind farm and hence are important in providing axial capacity to the foundation. Samples from the two soil units are tested and compared at different rates of shearing to evaluate the change in axial capacity and installation resistance of the offshore wind turbine foundations under various possible loading and drainage conditions. Comparison is also made between residual shear strength with and without a reconsolidation period to assess the potential for soil set-up and its influence on the soil capacity. The results show that, for both the clay and the chalk, the estimated residual shear strengths are quite similar between the conventional and interface shear tests and tend to increase with increasing shearing rate. This can be attributed to the increasing dominance of the turbulent shearing mode. Relative to the peak shear strength, the values of residual shear strength are approximately 5 to 35% lower in most cases. Reconsolidation for a period of 24 hours appears to have, if any, marginal positive effect on residual shear strength of the two soils in both shear box and interface shear box tests. The residual friction angles derived from the shear box and ring shear tests are comparable and fall in the immediate range of shear strength. The various test results imply that the pile foundations at the Sheringham Shoal would have considerably large axial capacity, assuming that the horizontal stress is similar to the normal stress used in testing. The test data however should be used with caution and combined with piling experience in comparable soils where possible. The study aims to provide a source of reference for design of pile foundations for sites with similar soil conditions.


Buildings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 182
Author(s):  
Zhi-Qi He ◽  
Changxue Ou ◽  
Fei Tian ◽  
Zhao Liu

This paper develops a new type of shear connection for steel-concrete composite bridges using Ultra-High Performance Concrete (UHPC) as the connection grout. The UHPC-grout strip shear connection is fabricated by preforming a roughened slot in the concrete deck slab, welding an embossed steel rib longitudinally to the upper flange of the steel girder, and casting the strip void between the slot and the steel rib with UHPC grout. The structural performance of the new connection was validated by two sets of experimental tests, including push-out testing of shear connectors and static and fatigue testing of composite beams. The results of push-out testing indicate that the UHPC-grout strip shear connection exhibits a significant improvement of ductility, ultimate capacity, and fatigue performance. The interface shear strength of the UHPC-grout strip connection is beyond 15 MPa, which is about three times that of the strip connection using traditional cementitious grouts. The ultimate capacity of the connection is dominated by the interface failure between the embossed steel and the UHPC grout. The results of composite-beam testing indicate that full composite action is developed between the precast decks and the steel beams, and the composite action remained intact after testing for two million load cycles. Finally, the trail design of a prototype bridge shows that this new connection has the potential to meet the requirements for horizontal shear.


Author(s):  
Hendy Setiawan ◽  
Kyoji Sassa ◽  
Kaoru Takara ◽  
Toyohiko Miyagi ◽  
Hiroshi Fukuoka ◽  
...  

2021 ◽  
Author(s):  
Lucia Mona ◽  
Giuseppe D'Amico ◽  
Simone Gagliardi ◽  
Francesco Amato ◽  
Aldo Amodeo ◽  
...  

<p>In December 2019, a contract between CNR and ECMWF was signed for a pilot ACTRIS/EARLINET data provision to the Copernicus Atmosphere Monitoring Service (CAMS). Such pilot contract (CAMS21b) aims to put in place a first data provision for a set of selected stations and it will demonstrate the feasibility of fully traceable and quality-controlled data provision for the whole network.</p><p>In CAMS21b, the main effort is devoted to design, test and set up the provision of quality-controlled ACTRIS/EARLINET products in Real Real Time (RRT) and/or Near Real Time (NRT) to CAMS. The activities are focused on the automatic centralized data processing and data provision, ensuring the full traceability of the products from the data acquisition level up to the final quality-controlled data level. Most of the activities are done at ARES, the EARLINET/ACTRIS data center node at CNR, for assuring the centralized, harmonized and quality-controlled processing in compliance with FAIR principles.</p><p>New modules and submodules of the ACTRIS/EARLINET Single Calculus Chain (SCC) as well as optimized algorithms for cloud screening have been designed. Additional procedures were implemented for improving the quality of the data provided in NRT, but also for the quality control of the Level 2 products which are delivered with a time delay.</p><p>The release of a new version of SCC and of QC procedure is planned for mid-February.</p><p>The data provision started in October 2020 at the test site of Potenza. A system has been set up for measurement reporting and monitoring of KPIs (Key Performance Indicators). After 3 months of measurements, the overall data provision system showed no critical points.</p><p>In January 2021, the provision started for a group of 9 stations which are seen as representative for the whole network in terms of instrumental capability, but also ensuring a good geographical coverage of the European continent.</p><p>In order to accommodate also measurements from non-continuous operation systems, a measurement schedule has been set up, compromising between the need of a large number of measurements and costs/efforts at each station. The measurement schedule has been designed through a representativeness study and foresees 6 slots of measurements per week, 3 in daytime and 3 in nighttime conditions.</p><p>The successful implementation of the pilot allows the provision of aerosol optical property profiles to the CAMS services. from a set of observational sites distributed over the different European regions. These profiles is expected to be of interest for the assimilation, near real time evaluation and re-analysis evaluation of several CAMS products, including the aerosol load over Europe for air quality issues, atmospheric composition, climate forcing and solar and UV products. This allows for having a systematic solution for looking into specific events as they develop (e.g. the dust plume that you investigated earlier this month or the Californian fires in September), supporting or contradicting model forecasts. This pilot is the first provision of aerosol profiles from a high-quality ground-based network in NRT for this kind of applications. It is expected that these efforts will be continued in the next phase of CAMS/Copernicus (2021-2027).</p>


2020 ◽  
Vol 91 (6) ◽  
pp. 064503
Author(s):  
Erik Spangenberg ◽  
Katja U. Heeschen ◽  
Ronny Giese ◽  
Judith M. Schicks

2019 ◽  
Vol 11 (20) ◽  
pp. 2381 ◽  
Author(s):  
Bianchini Ciampoli ◽  
Calvi ◽  
D’Amico

Effective maintenance of railways requires a comprehensive assessment of the actual condition of the construction materials involved. In this regard, Ground-Penetrating Radar (GPR) stands as a viable alternative to the invasive and time-consuming traditional techniques for the inspection of these infrastructures. This work reports the experimental activities carried out on a test-site area within a railway depot in Rome, Italy. To this purpose, a 30 m-long railway section was divided into 10 sub-sections reproducing different various physical and structural conditions of the track-bed. In more detail, combinations of varying scenarios of fragmentation and fouling of the ballast were reproduced. The set-up was then investigated using different multi-frequency GPR horn antenna systems. The effects of the different physical conditions of ballast on the electromagnetic response of the material were analysed for each scenario using time- and frequency-domain signal processing techniques. Parallel to this, modelling was provided to estimate fouling content. Interpretation of results has proven the viability of the GPR method in detecting signs of decay at the network level, thereby proving this technique to be worthy of implementation in asset management systems.


Sign in / Sign up

Export Citation Format

Share Document