scholarly journals Modeling and analysis of vector control systems for asynchronous motor

2020 ◽  
Vol 178 ◽  
pp. 01001 ◽  
Author(s):  
Viktor Meshcheryakov ◽  
Tatyana Sinyukova ◽  
Alexey Sinyukov ◽  
Andrei Boikov ◽  
Rustem Mukhametzhanov

The study aims at the analysis of vector control asynchronous electric drive systems. For comparison and evaluation, mathematical models of systems are implemented in the environment of simulation modeling Matlab Simulink. The evaluation criteria selected were: complexity of implementation, energy efficiency of the inverter, accuracy of speed maintenance, torque ripple, reaction speed of the system to disturbances from the side of the drive mechanism, impact on the supply network. Vector control systems by ensuring the maintenance of accuracy of the moment in the entire range of speed control are more widespread. The study of vector systems, the formation of the stator voltage vector in which is carried out using pulse-width modulation. The signal organization during the study was carried out by several methods. At the initial stage, the signal was formed due to relay-vector control in a closed loop for monitoring the instantaneous values of current errors without forced modulation; at the next stage of the study, the signal was generated using sinusoidal pulse-width modulation based on a comparison of control signals with some reference vector, the final stage became a spatial-vector modulation method.

2013 ◽  
Vol 373-375 ◽  
pp. 1294-1298
Author(s):  
Jin Li

Space vector pulse width modulation (SVPWM) is a method to control the AC asynchronous motor. SVPWM technology applied in AC speed regulation system can not only improve the shortcoming of low voltage utilization in the pulse-width modulation (PWM) technology, but have little torque ripple and low noise advantages. In this paper, a SVPWM vector control AC asynchronous motor speed regulation system employing a core TMS320LF2407A-type DSP chip was presented, and simulated the speed regulation system by MATLAB SIMULINK. The obtained simulation results indicate that the proposed speed regulation system has excellent dynamic and static performance, thus SVPWM control technology of asynchronous motor based on DSP has been implemented.


2012 ◽  
Vol 542-543 ◽  
pp. 1145-1149
Author(s):  
You Tao Zhao ◽  
Yan Cheng Liu ◽  
Jun Jie Ren

In this paper the implementation of the vector control and direct torque control systems for a marine permanent magnet synchronous motor has been studied. A novel control method using space vector pulse width modulation was proposed. Then the simulation models with the vector control and direct torque control using the space vector pulse width modulation method have been established, respectively. Finally, the speed control performance of the systems was verified by simulation. The simulation results indicates that the systems used vector control or direct torque control technique can meet the requirements with the aspect of marine PMSM dynamic torque response. Meanwhile comparing to the different simulation results, the torque ripple was reduced in the vector control system.


2012 ◽  
Vol 542-543 ◽  
pp. 854-858
Author(s):  
Cui Chen ◽  
Yin Zhong Ye

The neutral point clamped (NPC) pulse width modulation (PWM) inverter has been put into practical use for large capacity AC motor drives because of its less distorted output, lower costs and better control performance. This paper suggests a way to improve the performance of permanent magnet synchronous motor (PMSM) by using the three-level NPC inverter. Firstly, the three-level NPC inverter space voltage vector pulse width modulation (SVPWM) technique is analyzed in detail. Then, the NPC inverter is applied in PMSM vector control. Finally, a simulation experiment of the proposed control algorithm is carried out. The simulation results show that the proposed method can effectively suppress the torque ripple and improve driving performance for the PMSM drive.


Author(s):  
Ezz Eldin Ibrahim ◽  
Tarek Elnady ◽  
Mohamed Saffaa Hassan ◽  
Ibrahim Saleh

The presented work was directed to develop the dynamic performance of an electro-hydraulic proportional system (EHPS). A mathematical model of the EHPS is presented using electro- hydraulic proportional valve (EHPV) by Matlab-Simulink, which facilitates the simulation of the hydraulic behavior inside the main control unit. Experimental work is done and the closed loop system is designed using the linear variable displacement transducer sensor (LVDT). The controller of the system is an Arduino uno, which is considered as a processor of the system. The model is validated by the experimental system. The study also presents a real time tracking control method, based on pulse width modulation, by controlling the speed of the actuator to achieve the position tracking with minimum error and low transient time, by applying the constant input signal 50mm the transient time was 0.9 seconds and the error 1.8%.


2012 ◽  
Vol 12 (3) ◽  
pp. 448-457 ◽  
Author(s):  
Dinh-Tuyen Nguyen ◽  
Hong-Hee Lee ◽  
Tae-Won Chun

2021 ◽  
Vol 54 (2) ◽  
pp. 345-354
Author(s):  
Fayçal Mehedi ◽  
Habib Benbouhenni ◽  
Lazhari Nezli ◽  
Djamel Boudana

In this work, the direct torque control (DTC) is applied to the five-phase permanent magnet synchronous motor (FP-PMSM). The DTC method based on classical space vector pulse width modulation (SVPWM) is a common solution used to overcome traditional problems; such as stator flux ripple, electromagnetic torque ripple and gives more total harmonic distortion (THD) of the stator current. The actual paper is based on improving the performance of DTC-SVPWM by using the feedforward neural networks (FNNs) instead of the proportional-integral (PI) regulators and hysteresis comparators (HCs) of the conventional SVPWM strategy. This algorithm can solve the traditional PI regulators and HCs problems which are represented in responses dynamic and reduce the torque ripple, flux ripple, and the THD of stator current of FP-PMSM drives. The proposed strategy was tested in different tests with simulation using Matlab software.


Sign in / Sign up

Export Citation Format

Share Document