scholarly journals Effects of Microstructure Characteristics of Cortical Bone on its Microcrack Propagation

2020 ◽  
Vol 185 ◽  
pp. 03027
Author(s):  
Yu-xi Liu ◽  
Ai-hua Li ◽  
Yan-hua Li

Scanning electron microscope (SEM) was used to observe and analyze the microstructure of the cross section of cortical bone. The observation results illustrated that the cortical bone is composed of cylindrical osteons and interstitial bone between osteons, and the osteon are unevenly distributed. Based on the microstructure characteristics of cortical bone, three types of cortical bone mesoscopic analysis models were established. Then, the extended finite element method (X-FEM) was used to simulate the microcrack propagation process in bone. The simulate results show that the crack initiation strain of the two-phase model is 19.1% larger than that of the single-phase model, and the three-phase model is 57.8% larger than that of the two-phase model, which demonstrated that the osteons and cement line can significantly enhance the crack initiation strain of bone. In addition, under the same boundary conditions, the model with cement line can effectively change the propagation path of microcrack and prevent the propagation of crack. Therefore, the cement lines in cortical bone can effectively increase the fracture resistance of bone and enhance the fracture toughness of cortical bone.

Author(s):  
Zbigniew Mikulski ◽  
Vidar Hellum ◽  
Tom Lassen

The present paper presents a two-phase model for the fatigue damage evolution in welded steel joints. The argument for choosing a two-phase model is that crack initiation and subsequent crack propagation involve different damage mechanisms and should be treated separately. The crack initiation phase is defined as the number of cycles to reach a crack depth of 0.1 mm. This phase is modelled based on the Dang Van multiaxial stress approach. Both a multiaxial stress situation introduced by the acting loads and the presence of the multiaxial welding residual stresses are accounted for. The local notch effect at the weld toe becomes very important and the irregular weld toe geometry is characterized by extreme value statistics for the weld toe angle and radius. The subsequent crack growth is based in classical fracture based on the Paris law including the effect of the Stress Intensity Factor Range (SIFR) threshold value. The unique fatigue crack growth rate curve suggested by Huang, Moan and Cui is adopted. This approach keeps the growth rate parameters C and m constant whereas an effective SIFR is calculated for the actual stress range and loading ratio. The model is developed and verified based on fatigue crack growth data from fillet welded joints where cracks are emanating from the weld toe. For this test series measured crack depths below 0.1 mm are available. The two-phase model was in addition calibrated to fit the life prediction in the rule based S-N curve designated category 71 (or class F). A supplementary S-N curve is obtained by the Random Fatigue Limit Method (RFLM). The test results and the fitted model demonstrated that the crack initiation phase in welded joins is significant and cannot be ignored. The results obtained by the Dang Van approach for the initiation phase are promising but the modelling is not yet completed. The fracture mechanics model for the propagation phase gives good agreement with measured crack growth. However, it seems that the prediction of crack retardation based on a threshold value for the SIFR gives a fatigue limit that is overly optimistic for small cracks at the weld toe. The threshold value has been determined based on tests with rather large central cracks in plates. The validity for applying this threshold value for small cracks at the weld toe is questioned. As the present two-phase model is based on applied mechanics for both phases the parameters that have an influence on the fatigue damage evolution are directly entering into the model. Any change in these parameters can then be explicitly taken into account in logical and rational manner for fatigue life predictions. This not the case with the rule based S-N curves that are based on pure statistical treatment of the bulk fatigue life.


1998 ◽  
Vol 120 (1) ◽  
pp. 112-117 ◽  
Author(s):  
X. E. Guo ◽  
L. C. Liang ◽  
S. A. Goldstein

Microcracks have been associated with age-related bone tissue fragility and fractures. The objective of this study was to develop a simple osteonal cortical bone model and apply linear elastic fracture mechanics theory to understand the micromechanics of the fracture process in osteonal cortical bone and its dependence on material properties. The linear fracture mechanics of our composite model of conical bone, consisting of an osteon and interstitial bone tissue, was characterized in terms of a stress intensity factor (SIF) near the tip of a microcrack. The interaction between a microcrack and an osteon was studied for different types of osteons and various spacing between the crack and the osteon. The results of the analysis indicate that the fracture mechanics of osteonal cortical bone is dominated by the modulus ratio between the osteon and interstitial bone tissue: A soft osteon promotes microcrack propagation toward the osteon (and cement line) while a stiff one repels the microcrack from the osteon (and cement line). These findings suggest that newly formed, low-stiffness osteons may toughen cortical bone tissue by promoting crack propagation toward osteons. A relatively accurate empirical formula also was obtained to provide an easy estimation of the influence of osteons on the stress intensity factor.


2013 ◽  
Vol 734-737 ◽  
pp. 2851-2854
Author(s):  
Cheng Fan ◽  
Xue Qing Jing

This article expound the development process and the basic principles of the extended finite element, In the large commercial software abaqus on the platform of India koyna dam failure process are numerically simulated in earthquake, and koyna dam crack initiation, through ,propagation path analysis. The results show that the earthquake began to crack initiation site often at the large dam slope fold. The study provides a theoretical foundation and scientific basis for the actual engineering improves safety.


1968 ◽  
Vol 78 (3, Pt.1) ◽  
pp. 359-368 ◽  
Author(s):  
William F. Prokasy ◽  
Martha A. Harsanyi

1997 ◽  
Vol 35 (7) ◽  
pp. 139-145 ◽  
Author(s):  
Jiann-Yuan Ding ◽  
Shian-Chee Wu

The objective of this study is to quantify the effects of humic acid solution infiltration on the transport of organochlorine pesticides (OCPs) in soil columns using a three-phase transport model. From experimental results, it is found that the dissolved organic carbon enhances the transport of OCPs in the soil columns. In the OCPs-only column, the concentration profiles of OCPs can be simulated well using a two-phase transport model with numerical method or analytical solution. In the OCPs-DOC column, the migrations of aldrin, DDT and its daughter compounds are faster than those in the OCPs-only column. The simulation with the three-phase model is more accurate than that with the two-phase model. In addition, significant decrease of the fluid pore velocities of the OCPs-DOC column was found. When DOC leachate is applied for remediation of soil or groundwater pollution, the decrease of mean pore velocities will be a crucial affecting factor.


2012 ◽  
Vol 9 (1) ◽  
pp. 47-52
Author(s):  
R.Kh. Bolotnova ◽  
V.A. Buzina

The two-dimensional and two-phase model of the gas-liquid mixture is constructed. The validity of numerical model realization is justified by using a comparative analysis of test problems solution with one-dimensional calculations. The regularities of gas-saturated liquid outflow from axisymmetric vessels for different geometries are established.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 397
Author(s):  
Yahya Ali Fageehi

This paper presents computational modeling of a crack growth path under mixed-mode loadings in linear elastic materials and investigates the influence of a hole on both fatigue crack propagation and fatigue life when subjected to constant amplitude loading conditions. Though the crack propagation is inevitable, the simulation specified the crack propagation path such that the critical structure domain was not exceeded. ANSYS Mechanical APDL 19.2 was introduced with the aid of a new feature in ANSYS: Smart Crack growth technology. It predicts the propagation direction and subsequent fatigue life for structural components using the extended finite element method (XFEM). The Paris law model was used to evaluate the mixed-mode fatigue life for both a modified four-point bending beam and a cracked plate with three holes under the linear elastic fracture mechanics (LEFM) assumption. Precise estimates of the stress intensity factors (SIFs), the trajectory of crack growth, and the fatigue life by an incremental crack propagation analysis were recorded. The findings of this analysis are confirmed in published works in terms of crack propagation trajectories under mixed-mode loading conditions.


2021 ◽  
Vol 11 (10) ◽  
pp. 4435
Author(s):  
Ho-Quang NGUYEN ◽  
Trieu-Nhat-Thanh NGUYEN ◽  
Thinh-Quy-Duc PHAM ◽  
Van-Dung NGUYEN ◽  
Xuan Van TRAN ◽  
...  

Understanding of fracture mechanics of the human knee structures within total knee replacement (TKR) allows a better decision support for bone fracture prevention. Numerous studies addressed these complex injuries involving the femur bones but the full macro-crack propagation from crack initiation to final failure and age-related effects on the tibia bone were not extensively studied. The present study aimed to develop a patient-specific model of the human tibia bone and the associated TKR implant, to study fatigue and fracture behaviors under physiological and pathological (i.e., age-related effect) conditions. Computed tomography (CT) data were used to develop a patient-specific computational model of the human tibia bone (cortical and cancellous) and associated implants. First, segmentation and 3D-reconstruction of the geometrical models of the tibia and implant were performed. Then, meshes were generated. The locations of crack initiation were identified using the clinical observation and the fatigue crack initiation model. Then, the propagation of the crack in the bone until final failure was investigated using the eXtended finite element method (X-FEM). Finally, the obtained outcomes were analyzed and evaluated to investigate the age-effects on the crack propagation behaviors of the bone. For fatigue crack initiation analysis, the stress amplitude–life S–N curve witnessed a decrease with increasing age. The maximal stress concentration caused by cyclic loading resulted in the weakening of the tibia bone under TKR. For fatigue crack propagation analysis, regarding simulation with the implant, the stress intensity factorand the energy release rate tended to decrease, as compared to the tibia model without the implant, from 0.152.5 to 0.111.9 (MPa) and from 10240 to 5133 (J), respectively. This led to the drop in crack propagation speed. This study provided, for the first time, a detailed view on the full crack path from crack initiation to final failure of the tibia bone within the TKR implant. The obtained outcomes also suggested that age (i.e., bone strength) also plays an important role in tibia crack and bone fracture. In perspective, patient-specific bone properties and dynamic loadings (e.g., during walking or running) are incorporated to provide objective and quantitative indicators for crack and fracture prevention, during daily activities.


Sign in / Sign up

Export Citation Format

Share Document