scholarly journals In situ characterization of temperature and gas production using membrane interface probe (MIP) and hydraulic profiling tool (HPT) in an operating municipal solid waste landfill

2020 ◽  
Vol 205 ◽  
pp. 09009
Author(s):  
M. Sina Mousavi ◽  
Yuan Feng ◽  
Mostafa Afzalian ◽  
Josh McCann ◽  
Jongwan Eun

A modern Municipal Solid Waste (MSW) landfill is a renewable energy resource to produce a significant amount of heat and methane used for generating electricity. However, it is difficult to use those sources effectively because active and post-closure MSW landfills are heterogeneous spatially and temporally and exposed to complex environments with varying pressure and moisture in the landfill. With regard to the prediction of the sources, the analysis of in situ MSW properties is an alternative way to reduce the uncertainty and to understand complex processes undergoing in the landfill effectively. A Hydraulic Profiling Tool (HPT) and Membrane Interface Probe (MIP) measures the continuous profile of MSW properties with depth, including hydraulic pressure, temperature, hydraulic conductivity, electrical conductivity (EC), and concentration of selected volatile organic compounds and methane. In this study, we conducted a series of MIP with HPT tests to investigate the MSW characteristics of a landfill in Nebraska. The results of the test showed an increase in hydraulic pressure and temperature with depth. The EC profile showed a variety of different waste constituents and MIP results showed the methane trapped beneath the top cover. The results in terms of hydraulic properties, temperature and EC obtained from different sites can be used to estimate the waste age and help designing energy recovery systems.

2021 ◽  
Vol 6 (3) ◽  
pp. 33
Author(s):  
M. Sina Mousavi ◽  
Yuan Feng ◽  
Josh McCann ◽  
Jongwan Eun

Municipal solid waste (MSW) landfills near a metropolitan area are renewable energy resources to produce heat and methane that can generate electricity. However, it is difficult to use those sources productively because disposed MSW in landfills are spatially and temporally heterogeneous. Regarding the prediction of the sources, the analysis of in situ MSW properties is an alternative way to reduce the uncertainty and to understand complex processes undergoing in the landfill effectively. A hydraulic profiling tool (HPT) and membrane interface probe (MIP) test measures the continuous profile of MSW properties with depth, including hydraulic pressure, temperature, electrical conductivity (EC), and the relative concentration of methane at the field. In this study, we conducted a series of the tests to investigate the MSW characteristics of active and closed landfills. MIP results showed that the methane existed closer to right below the top cover in the active landfill and several peak concentrations at different layers of the closed landfill. As the depth and age of the waste increased, the hydraulic pressure increased for both landfills. The average EC results showed that the electrical conductivity decreased with the landfill age. The results of hydraulic properties, temperature, and EC obtained from active and closed sites could be used to estimate the waste age and help designing energy recovery systems.


Author(s):  
Di Yang ◽  
Qiang Xie ◽  
Xinqian Shu ◽  
Yiman Jia ◽  
Jinwei Jia ◽  
...  

2003 ◽  
Vol 23 (7) ◽  
pp. 667-674 ◽  
Author(s):  
Nitin A. Gawande ◽  
Debra R. Reinhart ◽  
Philip A. Thomas ◽  
Philip T. McCreanor ◽  
Timothy G. Townsend

Sign in / Sign up

Export Citation Format

Share Document