scholarly journals Siting and sizing of wind farms taking into account stochastic nature of generation

2020 ◽  
Vol 216 ◽  
pp. 01020
Author(s):  
Vladislav Shakirov ◽  
Victor Kurbatsky ◽  
Nikita Tomin ◽  
Huseyngulu Guliyev

The article deals with the problem of the negative impact of wind farms stochastic generation on power grid. One of the ways to reduce the stochasticity of the wind farms generation is their geographically distributed siting. A technique for sizing and distributed siting of wind farms from the standpoint of the influence on the variability of the total generated power is proposed. Modeling of wind power generation with hourly detailing is carried out using the developed Wind-MCA software based on data from archives of long-term observations of ground-based weather stations. The optimal distribution of wind turbines in potential locations is based on a genetic algorithm. The objective function is the coefficient of variation of the power generated by all wind farms in the sites under consideration, depending on the number of wind turbines in their composition. The genetic algorithm is implemented using the built-in MATLAB function. The proposed technique is applied to assess the capacity options and sites for wind farms in the Zabaykalsky Krai. The solution providing the minimum value of the coefficient of variation of the wind farms generated power and high value of the wind farms capacity utilization factor has been obtained.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Farzad Arefi ◽  
Jamal Moshtagh ◽  
Mohammad Moradi

In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000–2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997–2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms.


2020 ◽  
Vol 160 ◽  
pp. 1136-1147
Author(s):  
Yifan Zhou ◽  
Jindan Miao ◽  
Bin Yan ◽  
Zhisheng Zhang

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jun Yang ◽  
Rui Zhang ◽  
Qiuye Sun ◽  
Huaguang Zhang

With the fast growth in the number and size of installed wind farms (WFs) around the world, optimal wind turbines (WTs) micrositing has become a challenge from both technological and mathematical points of view. An appropriate layout of wind turbines is crucial to obtain adequate performance with respect to the development and operation of the wind power plant during its life span. This work presents a fuzzy genetic algorithm (FGA) for maximizing the economic profitability of the project. The algorithm considers a new WF model including several important factors to the design of the layout. The model consists of wake loss, terrain effect, and economic benefits, which can be calculated by locations of wind turbines. The results demonstrate that the algorithm performs better than genetic algorithm, in terms of maximum values of net annual value of wind power plants and computational burden.


Author(s):  
P. I. Gorlov ◽  
V. D. Siokhin ◽  
V. V. Osadchiy ◽  
V. M. Vasilyev ◽  
A. V. Matsyura ◽  
...  

<p>The necessity to adapt traditionally accepted methods of ornithological observations for wind powers ecological management suggested on the basis of research carried out in 2009-2015. Some 18 wind powers in the Azov-Black Sea region of Ukraine were examined. The essence of such adaptations is to consider the filed data on bird behavior in different phases of the annual cycle on the infrastructure of wind turbins in the stages of planning, construction and operation of the wind farm. The long-term observations prove the increasing risks for birds during their seasonal migrations from the wind powers. To assess the possible negative impact of wind farms on the birds we designed author's technique, which served as the basis for the computer program «WebBirds» and multi-threaded Web portal for the transfer, storage, access and processing of bird data.</p><p>This adapted methods of collecting field data together with computer program for evaluating the influence of wind farm on the birds and the Web portal for the transmission, storage and processing of data is the basis for the ecological management of wind parks area.</p><p><em>Keywords: birds, wind power, ecological management, Ukraine</em></p>


2021 ◽  
Vol 14 (1) ◽  
pp. 52-60
Author(s):  
V. A. Shakirov ◽  
V. G. Kurbatsky ◽  
N. V. Tomin ◽  
G. B. Guliev

The problem of the influence of power fluctuations of wind farms due to the variability of the wind speed on the electric power system is considered. With high wind energy penetration, an increase in the operating reserve in electric power systems is required to cover possible sudden power fluctuations. One of the ways to reduce the stochastic nature of the wind farms power generation is their geographically distributed location. A method is proposed for the selection of capacity and distributed placement of wind farms, taking into account the factor of the variability of the total generated power. In each of the prospective areas for wind farm placement, the simulation of electricity generation by a single wind turbine with hour-by-hour breakdown is carried out using the developed WindMCA software based on long-term ground-based weather stations data. Optimization of wind farms capacity and their distributed placement in areas is carried out using a genetic algorithm in the MATLAB environment. The target function is the coefficient of variation of the power generated by all wind farms in the areas under consideration, depending on the number of wind turbines therein. Power duration curves are used in the final comparison of wind farms siting options. The application of the method is carried out on the example of the wind farms placement in the Zabaykalsky Krai. A solution has been obtained that provides a minimum coefficient of variation of the wind farms generated power and a relatively high capacity utilization factor. With a distributed location of wind farms, the duration of the period with the maximum output is reduced, however, the duration of low power generation is significantly increased. With an increase in the number of wind farms connected to various nodes of the electric power system, a certain guaranteed level of power generation can be obtained, which, ultimately, will reduce the required amount of the reserve of generating capacities.


2014 ◽  
Vol 51 (4) ◽  
pp. 15-24
Author(s):  
A. Mutule ◽  
O. Kochukov

Abstract An approach is proposed to the modelling of wind farms in the electric power system long-term planning. It allows a specialist to perform calculations based on scanty information and offers a set of ready-to-use data for easy, fast, and precise modelling. The authors exemplify the calculations of wind speed probability density and power curves and give an idea for relevant corrections. They also show how to pass from a single wind turbine model to the unified model of multiple wind turbines which would meet the requirements of long-term planning tasks. The paper presents the data on wind farms that are operating in UK and Oceania


2021 ◽  
Vol 297 ◽  
pp. 01038
Author(s):  
Abdelouahad Bellat ◽  
Khalifa Mansouri ◽  
Abdelhadi Raihani

The optimization of the size of wind farms is little studied in the literature. The objective of this study is to renew the existing wind farms by inserting new wind turbines with different characteristics. To evaluate our approach, a genetic algorithm was chosen to optimize our objective function, which aims to maximize the power of the wind farm studied at a reasonable cost, the Jensen wake model was chosen for the power calculation of the park. The results obtained from the simulation on the Horns-rev wind farm showed a significant increase in energy and a relatively reasonable cost of energy.


2021 ◽  
Author(s):  
Kai-tung Ma ◽  
Yongyan Wu ◽  
Simen Fodstad Stolen ◽  
Leopoldo Bello ◽  
Menno ver der Horst ◽  
...  

Abstract As renewable energy developers start venturing into deeper waters, the floating offshore wind turbines (FOWTs) are becoming the preferred solutions over fixed supporting structures. Many similarities can be identified between a FOWT and a floating oil & gas facility, such as floater concepts (spar, semi-submersible, tension leg platform, etc) and their mooring system designs. This paper focuses on the mooring designs for FOWTs by leveraging the extensive experience gained from the offshore oil & gas industry. Similarities and differences are highlighted in design criteria, mooring analysis, long-term integrity management, installation method and project execution. The established practices regarding mooring design and analysis are reviewed. Anchor radius is recommended based on water depth by referencing sample mooring designs from the oil & gas industry. Long-term mooring integrity and failure rates are summarized. Meanwhile, a few well-known issues are discussed, such as line break due to fatigue, corrosion on chain, and known issues with components such as clump weights. Regarding mooring installation, the established method for prelay and hook-up is reviewed. Finally, opportunities for cost reduction of mooring systems of FOWTs are presented related to project execution of large scale wind farms as well as potential areas of innovation, such as installation methods, use of synthetic fiber rope, and digitalization. In summary, the state-of-the-art practices from the oil & gas industry are reviewed and documented to benefit the developments of upcoming FOWT projects.


Author(s):  
Anshul Mittal ◽  
Lafayette K. Taylor

Optimizing the placement of the wind turbines in a wind farm to achieve optimal performance is an active area of research, with numerous research studies being published every year. Typically, the area available for the wind farm is divided into cells (a cell may/may not contain a wind turbine) and an optimization algorithm is used. In this study, the effect of the cell size on the optimal layout is being investigated by reducing it from five rotor diameter (previous studies) to 1/40 rotor diameter (present study). A code is developed for optimizing the placement of wind turbines in large wind farms. The objective is to minimize the cost per unit power produced from the wind farm. A genetic algorithm is employed for the optimization. The velocity deficits in the wake of the wind turbines are estimated using a simple wake model. The code is verified using the results from the previous studies. Results are obtained for three different wind regimes: (1) Constant wind speed and fixed wind direction, (2) constant wind speed and variable wind direction, and (3) variable wind speed and variable wind direction. Cost per unit power is reduced by 11.7% for Case 1, 11.8% for Case 2, and 15.9% for Case 3 for results obtained in this study. The advantages/benefits of a refined grid spacing of 1/40 rotor diameter (1 m) are evident and are discussed. To get an understanding of the sensitivity of the power produced to the wake model, optimized layout is obtained for the Case 1 using a different wake model.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Wenliang Zhou ◽  
Xia Yang ◽  
Jin Qin ◽  
Lianbo Deng

Not only is the operating plan the basis of organizing marshalling station’s operation, but it is also used to analyze in detail the capacity utilization of each facility in marshalling station. In this paper, a long-term operating plan is optimized mainly for capacity utilization analysis. Firstly, a model is developed to minimize railcars’ average staying time with the constraints of minimum time intervals, marshalling track capacity, and so forth. Secondly, an algorithm is designed to solve this model based on genetic algorithm (GA) and simulation method. It divides the plan of whole planning horizon into many subplans, and optimizes them with GA one by one in order to obtain a satisfactory plan with less computing time. Finally, some numeric examples are constructed to analyze (1) the convergence of the algorithm, (2) the effect of some algorithm parameters, and (3) the influence of arrival train flow on the algorithm.


Sign in / Sign up

Export Citation Format

Share Document