scholarly journals Single well control area splitting method based on reservoir sphysical properties and gas well productivity differences

2021 ◽  
Vol 236 ◽  
pp. 01010
Author(s):  
Wang Chunpu

The determination of the control area of a single well is the prerequisite for the evaluation of the reserves of a single well. The current calculation methods of the control area of a single well are mainly divided into: experience formula, area balancing method, and the physical model, in order to solve the different limitations of the existing single-well control area splitting method and the problem of large error in use, this paper puts forward a kind of based on gas reservoir physical property and the growth of single well productivity difference algorithm for single well control area is split, according to the results of the split combining static reservoir parameters, using volumetric method for single well and the calculation of reserves of gas reservoir evaluation, further clarify the original and the remaining gas distribution of gas reservoir, for the subsequent reasonable development of the gas reservoir and enhance oil recovery. In this paper, block S of Sulige gas field is taken as an example, and the geological reserve of block is calculated as 354.75×108m3, compared with the basic proven reserves of Block S, 364.84×108m3, the error is 2.61% and the reliability is strong

2013 ◽  
Vol 734-737 ◽  
pp. 480-483
Author(s):  
Jun Bao Ma ◽  
Yu Long Ma ◽  
Chao Sun ◽  
Jian Guo Wang

The gas-water relations of low-permeability tight sand gas reservoir are complex and not necessarily linked to the structural relief, phenomenon that water is distributed in high structural position while gas in low structural position is common what makes it difficult to make a refined description of gas-water relations and distribution low. The article takes Zizhou gas field for example, establishes 4 gas-water relations modes of single well to analyze some profiles where there is abnormal phenomenon water up gas down, the fact is that water and gas are distributed in different sand bodies and Zizhou Gas Field is not a deep basin gas reservoir. The research shows the phenomenon that water up gas down does not exist, the gas-water relations are normal. The research results have certain significance for the determination of gas-water distribution law.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5677
Author(s):  
Jiaqi Zhang ◽  
Chang He ◽  
Jichen Yu ◽  
Bailu Teng ◽  
Wanjing Luo ◽  
...  

In order to reduce the cost of wellheads, the production rate of the gas wells in the Hechuan Gas Field are mostly measured in groups, which raises a stringent barrier for industries to determine the production rate of each single well. The technique for determining the production of a single well from the production of the well-group can be called the production splitting method (PSM). In this work, we proposed a novel PSM for the multi-well-monitor system (MWMS) on the basis of the Beggs and Brill (BB) correlation. This proposed method can account for the multi-phase flow together with the features of the pipelines. Specifically, we discretize the pipeline into small segments and recognize the flow pattern in each segment. The pressure drop along the pipeline is calculated with the Beggs and Brill correlation, and the production of each well is subsequently determined with a trial method. We also applied this proposed method to a field case, and the calculated results show that the results from this work undergo an excellent agreement with the field data.


2013 ◽  
Vol 868 ◽  
pp. 737-741 ◽  
Author(s):  
Feng Wang ◽  
Ji Nan Zhang ◽  
Chong Xi Li

The phenomenon of hydrate freeze-plugging is very widespread in Jilin oilfield M gas field exploitation. Freeze-plugging tends to occur in winter, mainly including ground pipeline, wellhead and wellbore freeze-plugging, etc, which affects the normal production of gas well, also has restricted the gas reservoir development and will cause huge economic losses. In order to prevent the freeze-plugging occurred in gas well, methyl alcohol is used to inject into single well at the rate of 600 to 3080 L/day. The field condition shows that the result of injecting methanol is not obvious, besides, the toxicity of methanol and its high cost already cannot satisfy the oilfield actual demand. Therefore, we need to research and develop new hydrate inhibitors with low cost and high efficiency to solve the problem of freeze-plugging.


2012 ◽  
Vol 204-208 ◽  
pp. 297-302
Author(s):  
Kui Zhang ◽  
Hai Tao Li ◽  
Yang Fan Zhou ◽  
Ai Hua Li

Low permeability, low abundance, water-bearing gas reservoirs are widely distributed in China, and their reserves constitute 85% of all kinds of reservoirs in current. It has important realistic meanings to develop them. Determining of reasonable gas well production is the prerequisite to achieving long-term high productivity and stable production. This paper takes Shanggu gas field at Sulige Gas Field for example, respectively from the dynamic data analogy methods, the pressure drop rate statistical methods, gas curve methods, production system nodal analysis methods, and studied the reasonable capacity of the low permeability gas reservoir. Through comprehensive analysis,the comprehensive technical indexes about single well reasonable production was determined.


Author(s):  
J., A. Anggoro

Tambora field is a mature gas field located in a swamp area of Mahakam delta without artificial lift. The main objective of this project is to unlock existing oil resources. Most oil wells could not flow because there is no artificial lift, moreover the network pressure is still at Medium Pressure (20 Barg). Given the significant stakes, the option to operate the testing barge continuously as lifting tool is reviewed. The idea is to set the separator pressure to 1-3 Barg, so that the wellhead flowing pressure could be reduced to more than 15 Barg which will create higher drawdown in front of the reservoir. The oil flows from the reservoir into the gauge tank, where it is then returned to the production line by transfer pumps. The trial was performed in well T-1 for a week in November 2017 and successfully produced continuous oil with a stable rate of 1000 bbls/d. What makes this project unique is the continuous operation for a long period of time. Therefore, it is important to ensure the capacity of the gauge tank and the transfer pump compatibility with the rate from the well, the system durability which required routine inspection and maintenance to ensure the testing barge unit is in prime condition and to maintain vigilance and responsiveness of personnel. This project started in 2018 for several wells and the cumulative production up to January 2020 has reached 158 k bbls and will be continued as there are still potential oil resources to be unlocked. Innovation does not need to be rocket science. Significant oil recovery can be achieved with a simple approach considering all safety operation, production and economic aspect.


2016 ◽  
Vol 57 (7) ◽  
pp. 1064-1077 ◽  
Author(s):  
Ding Xiaoqi ◽  
Yang Peng ◽  
Han Meimei ◽  
Chen Yang ◽  
Zhang Siyang ◽  
...  

Geology ◽  
2020 ◽  
Author(s):  
Berend A. Verberne ◽  
Suzanne J.T. Hangx ◽  
Ronald P.J. Pijnenburg ◽  
Maartje F. Hamers ◽  
Martyn R. Drury ◽  
...  

Europe’s largest gas field, the Groningen field (the Netherlands), is widely known for induced subsidence and seismicity caused by gas pressure depletion and associated compaction of the sandstone reservoir. Whether compaction is elastic or partly inelastic, as implied by recent experiments, is a key factor in forecasting system behavior and seismic hazard. We sought evidence for inelastic deformation through comparative microstructural analysis of unique drill core recovered from the seismogenic center of the field in 2015, 50 yr after gas production started, versus core recovered before production (1965). Quartz grain fracturing, crack healing, and stress-induced Dauphiné twinning are equally developed in the 2015 and 1965 cores, with the only measurable effect of gas production being enhanced microcracking of sparse K-feldspar grains in the 2015 core. Interpreting these grains as strain markers, we suggest that reservoir compaction involves elastic strain plus inelastic compression of weak clay films within grain contacts.


Sign in / Sign up

Export Citation Format

Share Document