scholarly journals Exploring the effects of CDK7 inhibition by YKL-5-124 on the molecular mechanisms and the ways it triggers cytokines production in Small Cell Lung Cancer in vitro

2021 ◽  
Vol 245 ◽  
pp. 03027
Author(s):  
Weining Chen

The previous study has researched that combining YKL-5-124, CDK7 specific target drug with anti-PD-1 treatment had a survival advantage in various Small Cell Lung Cancer models. However, the molecular mechanism that YKL-5-124 triggers inflammatory response remains unknown. This study investigates the effects of CDK7 inhibition by YKL-5-124 on two DNA damage pathways (ATM and ATR) of SCLC in vitro. The result of this study will reveal the effects of CDK7 inhibition by YKL-5-124 on the molecular mechanisms of SCLC and potentially promote the development of new anticancer treatment strategies based on immunity manipulation.

2021 ◽  
Vol 12 ◽  
Author(s):  
Qin Ye ◽  
Li Zhou ◽  
Ping Jin ◽  
Lei Li ◽  
Shuwen Zheng ◽  
...  

Non-small cell lung cancer (NSCLC) is one of the most frequent cancers worldwide, yet effective treatment remains a clinical challenge. Guaiazulene (GYZ), a cosmetic color additive, has previously been characterized as a potential antitumor agent due to observed anticancer effects. However, the efficacy of GYZ in the treatment of NSCLC and the involved molecular mechanisms remain largely unknown. Here, we indicated a role for GYZ in the suppression of NSCLC both in vitro and in vivo via triggering reactive oxygen species (ROS)-induced apoptosis. Concomitantly, GYZ induced complete autophagic flux in NSCLC cells via inhibiting the Akt/mTOR signaling pathway, which displayed cytoprotective effect against GYZ-induced growth suppression. Accompanied with autophagy inhibition obviously enhanced the effects of GYZ. Notably, GYZ acts synergistically with paclitaxel in the suppression of NSCLC in vitro. Together, our results for the first time reported that GYZ suppressed the proliferation of NSCLC and suggested a potential strategy for inhibiting NSCLC growth by combinational use of GYZ and autophagy inhibitors.


Author(s):  
Yaqiong Tian ◽  
Zengli Zhang ◽  
Liyun Miao ◽  
Zhimin Yang ◽  
Jie Yang ◽  
...  

Recently, epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have revolutionized non-small cell lung cancer (NSCLC) treatment. However, resistance remains a major obstacle. Anexelekto (AXL) is a member of receptor tyrosine kinases (RTKs) and shares the same downstream signaling pathways with EGFR, such as PI3K/AKT and MAPK/ERK. AXL overexpression in resistant tumors has been implicated in many previous studies in vitro and in vivo. In this study, we further examined whether expression of AXL and its downstream targets increased in gefitinib-resistant PC9 cells (PC9GR). In addition, we hypothesize that knocking down AXL in PC9GR and overexpressing AXL in PC9 using genetic tools can restore and decrease the sensitivity to gefitinib, respectively. We found that silencing AXL could sensitize the resistance to gefitinib, and the downstream pathways were significantly inhibited. Interestingly, we also discovered that increased AXL expression did promote the resistance, and its downstream targets were activated accordingly. Then 69 NSCLC patients who harbored EGFR mutation were recruited to analyze the expression of AXL and the association between AXL expression and clinical characteristics. We found that 5 of the 69 patients were AXL positive (about 7%), and AXL was related to tumor differentiation and tumor size. In this study, we concluded that the molecular mechanisms of AXL mediated resistance involved in the increased activity of the PI3K/AKT and MAPK/ERK1/2 pathways, and AXL overexpression could promote resistance, but it can be weakened when AXL expression is silenced.


2021 ◽  
pp. 102304
Author(s):  
Suleyman Gokhan Colak ◽  
Canan Vejselova Sezer ◽  
Ruken Esra Demirdogen ◽  
Mine Ince ◽  
Fatih Mehmet Emen ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Katrina Kildey ◽  
Neha S. Gandhi ◽  
Katherine B. Sahin ◽  
Esha T. Shah ◽  
Eric Boittier ◽  
...  

AbstractPlatinum-based chemotherapy remains the cornerstone of treatment for most non-small cell lung cancer (NSCLC) cases either as maintenance therapy or in combination with immunotherapy. However, resistance remains a primary issue. Our findings point to the possibility of exploiting levels of cell division cycle associated protein-3 (CDCA3) to improve response of NSCLC tumours to therapy. We demonstrate that in patients and in vitro analyses, CDCA3 levels correlate with measures of genome instability and platinum sensitivity, whereby CDCA3high tumours are sensitive to cisplatin and carboplatin. In NSCLC, CDCA3 protein levels are regulated by the ubiquitin ligase APC/C and cofactor Cdh1. Here, we identified that the degradation of CDCA3 is modulated by activity of casein kinase 2 (CK2) which promotes an interaction between CDCA3 and Cdh1. Supporting this, pharmacological inhibition of CK2 with CX-4945 disrupts CDCA3 degradation, elevating CDCA3 levels and increasing sensitivity to platinum agents. We propose that combining CK2 inhibitors with platinum-based chemotherapy could enhance platinum efficacy in CDCA3low NSCLC tumours and benefit patients.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 141
Author(s):  
Iwona Ziółkowska-Suchanek

Hypoxia is the most common microenvironment feature of lung cancer tumors, which affects cancer progression, metastasis and metabolism. Oxygen induces both proteomic and genomic changes within tumor cells, which cause many alternations in the tumor microenvironment (TME). This review defines current knowledge in the field of tumor hypoxia in non-small cell lung cancer (NSCLC), including biology, biomarkers, in vitro and in vivo studies and also hypoxia imaging and detection. While classic two-dimensional (2D) in vitro research models reveal some hypoxia dependent manifestations, three-dimensional (3D) cell culture models more accurately replicate the hypoxic TME. In this study, a systematic review of the current NSCLC 3D models that have been able to mimic the hypoxic TME is presented. The multicellular tumor spheroid, organoids, scaffolds, microfluidic devices and 3D bioprinting currently being utilized in NSCLC hypoxia studies are reviewed. Additionally, the utilization of 3D in vitro models for exploring biological and therapeutic parameters in the future is described.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Jianjiao Ni ◽  
Xiaofei Zhang ◽  
Juan Li ◽  
Zhiqin Zheng ◽  
Junhua Zhang ◽  
...  

AbstractBone is a frequent metastatic site of non-small cell lung cancer (NSCLC), and bone metastasis (BoM) presents significant challenges for patient survival and quality of life. Osteolytic BoM is characterised by aberrant differentiation and malfunction of osteoclasts through modulation of the TGF-β/pTHrP/RANKL signalling pathway, but its upstream regulatory mechanism is unclear. In this study, we found that lncRNA-SOX2OT was highly accumulated in exosomes derived from the peripheral blood of NSCLC patients with BoM and that patients with higher expression of exosomal lncRNA-SOX2OT had significantly shorter overall survival. Additionally, exosomal lncRNA-SOX2OT derived from NSCLC cells promoted cell invasion and migration in vitro, as well as BoM in vivo. Mechanistically, we discovered that NSCLC cell-derived exosomal lncRNA-SOX2OT modulated osteoclast differentiation and stimulated BoM by targeting the miRNA-194-5p/RAC1 signalling axis and TGF-β/pTHrP/RANKL signalling pathway in osteoclasts. In conclusion, exosomal lncRNA-SOX2OT plays a crucial role in promoting BoM and may serve as a promising prognostic biomarker and treatment target in metastatic NSCLC.


Drug Delivery ◽  
2021 ◽  
Vol 28 (1) ◽  
pp. 1510-1523
Author(s):  
Ying Wang ◽  
Mimi Guo ◽  
Dingmei Lin ◽  
Dajun Liang ◽  
Ling Zhao ◽  
...  

2010 ◽  
Vol 43 (10) ◽  
pp. 1001-1009 ◽  
Author(s):  
A.O. Santos ◽  
J.P. Pereira ◽  
M.C. Pedroso de Lima ◽  
S. Simões ◽  
J.N. Moreira

Sign in / Sign up

Export Citation Format

Share Document