scholarly journals Impact of county-scale land use change on the value of ecosystem services: A case study in Nanping, Fujian, China

2021 ◽  
Vol 248 ◽  
pp. 01027
Author(s):  
LiLi Zhao

With the changing behavior of land use by explosive population growth, the ecological environment is constantly disturbed and destroyed by humans, and the value of ecosystem services is obviously degraded. After the introduction of the national new-type urbanization plan, counties have become the key areas to promote new-type urbanization, and county land use is exceptionally active. Therefore, it is especially urgent to grasp the impact of county land use changes on ecosystem service values. Based on remote sensing satellite image interpretation to obtain county land use classification data, the changes of ecosystem service values in County between 1995 and 2015 were thoroughly explored. The research results show that the total value of ecosystem services has increased in most regions during the 20 years, among which, the service value of Shunchang County has increased most significantly. In terms of the service values of different land use types in each region, woodland is the main contributor to ecological services in different regions. From different time periods, Jian’ou City had the highest value of woodland ecosystem services in 1995 and 2015. In contrast, Songxi County had a lower value of services for each ecosystem type during 20 years.

2020 ◽  
Vol 12 (14) ◽  
pp. 5707
Author(s):  
Zhiyin Wang ◽  
Jiansheng Cao ◽  
Chunyu Zhu ◽  
Hui Yang

The development of the Xiong’an New Area is a crucial strategy for the next millennium in China. The ecosystem upstream of the Xiong’an New Area, serving for the development of the Xiong’an New Area, changed with land use changes. To analyze the contribution rate of the land use change to the ecosystem service value, we analyzed the land use changes of three small watersheds (7318.56 km2) upstream of the Xiong’an New Area based on a total of six phases of land use data from 1980 to 2015. Then, the ecosystem service value (ESV) was calculated using the equivalent factor method. The results showed that the construction land and arable land were the largest land use types that increased and decreased in the area of the study area, respectively. The grassland and construction land were the land use types with the largest transfer-out area and transfer-in area, respectively. The regulating services accounted for the largest proportion of total ESV among different ecosystem service functions, and the grassland and woodland accounted for the largest proportion of total ESV among different land use types. ESV in the study area fluctuated slightly from 1980 to 2015. The decrease of ESV mainly occurred in the surrounding areas of mountain towns, and the conversion of cultivated land to construction land was the main reason for the decrease of ESV in this area. The conversion of grassland to construction land had the largest contribution rate to the decrease of ESV in the study area, while the conversion of grassland to waters had the largest contribution rate to the increase of ESV. In conclusion, controlling the development of construction land and strengthening water resources’ protection may improve the ecosystem service value in the upstream Xiong’an New Area in the future.


2020 ◽  
Vol 165 ◽  
pp. 02024
Author(s):  
Min Liu ◽  
Shimin Wen ◽  
Chuanjiang Zhang

In order to evaluate the impact of land use change on ecosystem service value in Dujiangyan City, through equivalent factor method, qualitative and quantitative analysis is carried out on the dynamic change of land use change and its caused ecosystem service value in Dujiangyan City from 2010 to 2016. The results show that: (1) Dujiangyan city land use changes a large extent, with the extension of construction land expansion as the main increase part, and at the cost of the reduction of arable land and grassland area. (2) Over the past 7 years, the total value of ecosystem services in Dujiangyan city followed a law of first rising and then falling, showing an overall rising trend, with a total increase of 19.2244 million yuan. (3) The accuracy of the ecological value coefficient of woodland and grassland will greatly affect the value assessment of ecosystem services in Dujiangyan city. (4) From the relationship between land use type and ecosystem service value, cultivated land and construction land are negatively correlated with ecosystem service value, on the contrary, forest land, grassland, water area and construction land are positively correlated with ecosystem service value. In general, the land use of Dujiangyan City did not cause obvious damage to the ecological environment, but also cannot ignore the impact of land use changes on the environment in the process of economic development. It is necessary to control the growth of construction land area, promote the conservation and rational development of Eco-tourism area in Dujiangyan City, maintain the stability of ecosystem services in Dujiangyan City, and realize the strategy of sustainable development of Social-Economic-Ecological benefits.


2021 ◽  
Vol 13 (2) ◽  
pp. 704
Author(s):  
Zhiyin Wang ◽  
Jiansheng Cao

The evaluation of ecosystem service value has become the basis of ecological protection, ecological regionalization, and ecological compensations. Land use changes have taken place due to several natural and anthropogenic reasons, significantly influencing the ecosystem services value (ESV). In this study, we used an interactive coupling model that simulates future land use changes and the equivalent coefficient table method to predict and evaluate the ecosystem service value in the upstream of Xiong’an New Area in 2035, and we quantitatively calculated the impact of land use changes on the ecosystem service value under four future scenarios. The results indicate that from 2015 to 2035, the ecosystem service value in the production scenario and life scenario decreased significantly by CNY 1635.39 million and 561.95 million, respectively, and the areas where the ESV decreased mainly appeared in river banks and surrounding areas of towns. The conversion of forest land to cultivated land and the conversion of grassland to construction land are the main reasons for the reduction of the ecosystem service value in the production scenario and life scenario, respectively. The ecosystem service value in the ecological scenario increased significantly by CNY 2550.59 million, and the conversion of grassland to waters is the main reason for the increase in ecosystem service value, with a contribution rate of 73.89%. Moreover, due to the trade-off between ecosystem services, the overall change of ecosystem service value in the current scenario is not obvious. In conclusion, strictly controlling the scale of construction land, strengthening the management and protection of water resources, and expanding the afforestation scale may improve the ecosystem service value of the upstream Xiong’an New Area in the future.


One Ecosystem ◽  
2020 ◽  
Vol 5 ◽  
Author(s):  
Dirk Vrebos ◽  
Jan Staes ◽  
Steven Broekx ◽  
Leo de Nocker ◽  
Karen Gabriels ◽  
...  

Since the early 2000s, there have been substantial efforts to transform the concept of ecosystem services into practice. Spatial assessment tools are being developed to evaluate the impact of spatial planning on a wide range of ecosystem services. However, the actual implementation in decision-making remains limited. To improve implementation, tools that are tailored to local conditions can provide accurate, meaningful information. Instead of a generic and widely-applicable tool, we developed a regional, spatially-explicit tool (ECOPLAN-SE) to analyse the impact of changes in land use on the delivery of 18 ecosystem services in Flanders (Belgium). The tool incorporates ecosystem services relevant to policy-makers and managers and makes use of detailed local data and knowledge. By providing an easy-to-use tool, including the required spatial geodatasets, time investment and the learning curve remain limited for the user. With this tool, constraints to implement ecosystem service assessments in local decision-making are drastically reduced. We believe that region-specific decision support systems, like ECOPLAN-SE, are indispensable intermediates between the conceptual ecosystem service frameworks and the practical implementation in planning processes.


2020 ◽  
Vol 12 (4) ◽  
pp. 710 ◽  
Author(s):  
Trinidad del Río-Mena ◽  
Louise Willemen ◽  
Anton Vrieling ◽  
Andy Nelson

Landscape processes fluctuate over time, influencing the intra-annual dynamics of ecosystem services. However, current ecosystem service assessments generally do not account for such changes. This study argues that information on the dynamics of ecosystem services is essential for understanding and monitoring the impact of land management. We studied two regulating ecosystem services (i. erosion prevention, ii. regulation of water flows) and two provisioning services (iii. provision of forage, iv. biomass for essential oil production) in thicket vegetation and agricultural fields in the Baviaanskloof, South Africa. Using models based on Sentinel-2 data, calibrated with field measurements, we estimated the monthly supply of ecosystem services and assessed their intra-annual variability within vegetation cover types. We illustrated how the dynamic supply of ecosystem services related to temporal variations in their demand. We also found large spatial variability of the ecosystem service supply within a single vegetation cover type. In contrast to thicket vegetation, agricultural land showed larger temporal and spatial variability in the ecosystem service supply due to the effect of more intensive management. Knowledge of intra-annual dynamics is essential to jointly assess the temporal variation of supply and demand throughout the year to evaluate if the provision of ecosystem services occurs when most needed.


Author(s):  
Keyue Yuan ◽  
Fei Li ◽  
Haijuan Yang ◽  
Yiming Wang

Land use change has an impact on the ecosystem service value because it changes the structure and function of ecosystems. This paper analyzed the changes in land use during the period from 2000 to 2015 in Shangzhou district, and used the equivalent value of ecological services per unit area of land ecosystem combining the natural and economic conditions of Shangzhou district. Based on this method, the ecological service value of Shangzhou district was estimated, and the impact of land use change on the ecological service value was analyzed. The results showed that: (1) the main types of land use in Shangzhou district were grassland, woodland and farmland, among which the contribution rate of woodland to the value of local ecosystem services was the highest; (2) the overall trend in the ecosystem service value in Shangzhou district increased between 2000 and 2015, from 10.74 × 108 yuan in 2000 to 20.32 × 108 yuan in 2015, which is the result of the combined effects of regional economic development and changes in the natural environment and land use patterns; and (3) the main reason for the value increase of ecosystem services in Shangzhou district between 2000 and 2015 was that the grain-for-green policy transformed a considerable amount of farmland into woodland, while the main reasons for a decline in value was the expansion of built-up land that occupied other types of land.


Author(s):  
Sai Hu ◽  
Longqian Chen ◽  
Long Li ◽  
Bingyi Wang ◽  
Lina Yuan ◽  
...  

Urbanization-induced land-use change will lead to variations in the demand and supply of ecosystem services, thus significantly affecting regional ecosystem services. The continuous degradation of ecosystem functions has become a serious problem for humanity to solve. Therefore, quantitative analysis of the corresponding impact of land-use change on ecosystem service value (ESV) is important to socio-economic development and ecological protection. The Anhui province in China has experienced rapid urbanization in recent years, and ecological environmental remediation and protection have become important goals for regional development. In this paper, the province of Anhui has been selected as a case of study, we analyzed the land-use change using Landsat images from 2000, 2005, 2010, and 2015. We then adjusted the equivalent factor of ESV per unit area and estimated the ESV of Anhui province from 2000 to 2015 to analyze the impact of land-use change on ESV. Our results show that (1) paddy field is the main land-use type in Anhui province, the built-up land area has continuously increased, and the water area has continuously decreased; (2) the total ESV of Anhui province decreased from 30,015.58 × 107 CNY in 2000 to 29,683.74 × 107 CNY in 2015 (the rate of change was −1.11%), and regulating services make the greatest contribution to ESV; and (3) land-use change has led to severe ESV variations, especially for the expansion of water area and built-up land. Our study results provide useful insights for the development of land-use management and environmental protection policies in Anhui province.


2021 ◽  
Author(s):  
Violet Kanyiginya ◽  
Ronald Twongyirwe ◽  
Grace Kagoro ◽  
David Mubiru ◽  
Matthieu Kervyn ◽  
...  

<p>Uganda is regularly affected by multiple natural hazards, including floods, droughts, earthquakes, landslides and windstorms. This is due to a combination of natural biophysical factors such as steep topography, intense rainfall, variability of dry and rain seasons and high weathering rates. In addition, high population density, deforestation and other human-induced land use changes, and high poverty levels are believed to have an influence on the patterns of natural hazards and their impacts in the region. Despite this, there are limited studies that assess where and when natural hazards occur in Uganda, and a dearth of information on the processes involved. In addition, drivers and earth/landscape characteristics controlling the occurrence of natural hazards in the country remain poorly understood despite the high need for effective disaster risk reduction. Here, we present the ongoing methodological research framework and the first results of a study whose main objective is to understand the spatial and temporal occurrence of natural hazards that affect the Kigezi Highlands of south western Uganda and their interactions. To this end, the study is undertaking a comprehensive regional hazard inventory consisting of satellite image analysis, field surveys and exploration of literature and archives. Historical aerial photos and interviews with the elderly are important tools to analyze the impact of multi-decadal human-induced land use changes on natural hazard occurrences. Meanwhile, a network of 15 geo-observers, i.e. citizens of local communities distributed across representative landscapes of the study area, was established in December 2019. Trained at using smartphone technology, they collect information (processes and impacts) on seven different natural hazards (droughts, earthquakes, floods, hailstorms, landslides, lightning, and windstorms) whenever they occur.  During the first 12 months, 204 natural hazard events with accurate timing information have been reported by the geo-observers. Combined to field survey, these recent events have been associated mainly with the occurrence of > 3000 shallow landslides and 30 floods, frequently in co-occurrence and triggered by heavy rainfall. Additional inventory from Google Earth and Planet imagery covering a region much larger than that of the geo-observer network and a time window of more than 10 years shows an extra 230 landslide and flood occurrences, while archives and literature indicate 226 natural hazard events over the last 30 years. The preliminary results already demonstrate the value of citizen-science in producing highly detailed natural hazard inventory. A combination of different inventory methods improves the level of accuracy in understanding the spatial-temporal distribution of natural hazards.</p>


2021 ◽  
Author(s):  
Fabio Carvalho ◽  
Alona Armstrong ◽  
Mark Ashby ◽  
Belinda Howell ◽  
Hannah Montag ◽  
...  

<p>According to the latest IPCC report, 70 to 85% of electricity generation worldwide will need to come from renewable sources of energy by 2050 if countries are to meet internationally agreed greenhouse gas emissions targets. In the rush to decarbonise energy supplies to meet such targets, solar parks (SPs) have proliferated around the world, with uncertain implications for the biodiversity and ecosystem service (ES) provision of hosting ecosystems. SPs necessitate significant land-use change that could disproportionately affect the local environment compared to other low-carbon sources.</p><p>In Britain, SPs are commonly built on intensive arable land and managed as grasslands. This offers both risks and opportunities for ecosystem health, yet evidence for assessing ecosystem consequences is scarce. Therefore, there is an urgent need to understand how net environmental gains can be integrated into land-use change for solar energy development to address the current biodiversity and climate crises.</p><p>We used vegetation data from over 70 SPs and 50 countryside survey plots (1 km<sup>2</sup>) in England and Wales to assess the effects of land-use change for SPs on plant diversity and ES provision. We assessed ten habitat indicator variables (e.g., species richness, larval food plants, forage grasses, bird food plants) associated to functionally important plant species that have the potential to enhance ecosystem service delivery.</p><p>SPs showed higher diversity of habitat indicator species than arable land and improved grasslands, with vegetation between solar arrays showing higher numbers of species important for ES provision (e.g., N-fixing species important for nutrient cycling) than vegetation under solar panels. Overall, the diversity of habitat indicator species seemed highly dependent on former land-use, showing SPs have the potential to enhance ecosystem services provision if built on degraded agricultural land.</p><p>Developing this understanding will enable optimisation of SP design and management to ensure delivery of ecosystem co-benefits from this growing land-use.</p>


Sign in / Sign up

Export Citation Format

Share Document