scholarly journals A Secure and Fast Access Protocol for Collecting Terminal in Power Internet of Things based on Symmetric Cryptographic Algorithm

2021 ◽  
Vol 252 ◽  
pp. 01007
Author(s):  
Feng Zhai ◽  
Yingjie Zhao ◽  
Lingda Kong ◽  
Xiaojuan Zhang ◽  
Lin Jiang

The development of Power Internet of Things has brought a variety of access requirements for massive collecting terminals. Based on the characteristics of security attributes of Power Internet of Things, this paper proposes a secure access protocol based on symmetric cryptographic algorithm for the large number of collecting terminals with limited manufacturing cost, computing power and storage resources. This protocol only uses the symmetric cryptographic algorithm which has the fast computing speed and low resource consumption, and the protocol can realize two-way identity authentication between the collecting terminal and master station. At the same time, combined with the historical access mechanism, it improves the access efficiency of the collecting terminals, and realizes the safe and fast access of the collecting terminal. Finally, compared with other protocols, the proposed protocol is also effective in security and performance.

2021 ◽  
pp. 1-14
Author(s):  
Fen Li ◽  
Oscar Sanjuán Martínez ◽  
R.S. Aiswarya

BACKGROUND: The modern Internet of Things (IoT) makes small devices that can sense, process, interact, connect devices, and other sensors ready to understand the environment. IoT technologies and intelligent health apps have multiplied. The main challenges in the sports environment are playing without injuries and healthily. OBJECTIVE: In this paper the Internet of Things-based Smart Wearable System (IoT-SWS) is introduced for monitoring sports person activity to improve sports person health and performance in a healthy way. METHOD: Wearable systems are commonly used to capture individual sports details on a real-time basis. Collecting data from wearable devices and IoT technologies can help organizations learn how to optimize in-game strategies, identify opponents’ vulnerabilities, and make smarter draft choices and trading decisions for a sportsperson. RESULTS: The experimental result shows that IoT-SWS achieve the highest accuracy of 98.22% and efficient in predicting the sports person’s health to improve sports person performance reliably.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Kwang-il Hwang ◽  
Sung-wook Nam

In order to construct a successful Internet of things (IoT), reliable network construction and maintenance in a sensor domain should be supported. However, IEEE 802.15.4, which is the most representative wireless standard for IoT, still has problems in constructing a large-scale sensor network, such as beacon collision. To overcome some problems in IEEE 802.15.4, the 15.4e task group proposed various different modes of operation. Particularly, the IEEE 802.15.4e deterministic and synchronous multichannel extension (DSME) mode presents a novel scheduling model to solve beacon collision problems. However, the DSME model specified in the 15.4e draft does not present a concrete design model but a conceptual abstract model. Therefore, in this paper we introduce a DSME beacon scheduling model and present a concrete design model. Furthermore, validity and performance of DSME are evaluated through experiments. Based on experiment results, we analyze the problems and limitations of DSME, present solutions step by step, and finally propose an enhanced DSME beacon scheduling model. Through additional experiments, we prove the performance superiority of enhanced DSME.


Author(s):  
Zhiping Wang ◽  
Xinxin Zheng ◽  
Zhichen Yang

The Internet of Things (IoT) technology is an information technology developed in recent years with the development of electronic sensors, intelligence, network transmission and control technologies. This is the third revolution in the development of information technology. This article aims to study the algorithm of the Internet of Things technology, through the investigation of the hazards of athletes’ sports training, scientifically and rationally use the Internet of Things technology to collect data on safety accidents in athletes’ sports training, thereby reducing the risk of athletes’ sports training and making athletes better. In this article, the methods of literature research, analysis and condensing, questionnaire survey, theory and experiment combination, etc., investigate the safety accident data collection of the Internet of Things technology in athletes’ sports training, and provide certain theories and methods for future in-depth research practice basis. The experimental results in this article show that 82% of athletes who are surveyed under the Internet of Things technology will have partial injuries during training, reducing the risk of safety accidents in athletes’ sports training, and better enabling Chinese athletes to achieve a consistent level of competition and performance through a virtuous cycle of development.


Author(s):  
W Wu ◽  
S S Rao

The quality and performance of any mechanical system are greatly influenced by the GD&T (geometric dimensioning and tolerancing) used in its design. A proper consideration of the various types of tolerances associated with different components could not only satisfy the assembly requirements, but also minimize the manufacturing cost. To satisfy the design and functional specifications, one has to know how various tolerance patterns affect the manufacturability and assemblability of the designed parts. Therefore, a thorough understanding of how different forms of mechanical tolerances interact with each other becomes a must for designers and manufacturers. The effects of form, orientation, and position tolerances on the kinematic features and dimensions of mechanical systems are analysed using a new approach, based on fuzzy logic, in this article. In this approach, the α-cut method is used with the mechanical tolerances concerned as intervals. The proposed approach represents a more natural and realistic way of dealing with uncertain properties like geometric dimensions. A typical mechanical assembly system involving form, orientation, and position tolerances is used as an illustrative example. As the fuzzy approach leads to systems of non-linear interval equations, a modified Newton-Raphson method is developed for the solution of these equations. The current approach is found to be effective, simple, and accurate and can be extended to the analysis and synthesis of any uncertain mechanical system where the probability distribution functions of the uncertain parameters are unknown.


2018 ◽  
Vol 3 (1) ◽  
pp. 55
Author(s):  
Griffani Megiyanto Rahmatullah ◽  
Muhammad Ayat ◽  
Wirmanto Suteddy

Sistem keamanan rumah merupakan implementasi yang harus dilakukan untuk meningkatkan keamanan dari kejadian yang tidak diinginkan. Beberapa implementasi hanya memberikan notifikasi sederhana berupa alarm dan tidak menjadi bukti yang kuat apabila terjadi pencurian. Salah satu solusi yang dilakukan adalah penempatan kamera untuk memantau keamanan rumah secara real time diintegrasikan dengan penyimpanan cloud. Bluemix merupakan salah satu provider untuk aplikasi cloud yang memiliki layanan pengolahan dan penyimpanan data, akses aplikasi mobile, pengawasan serta Internet of Things (IoT). Sistem yang diimplementasikan adalah integrasi Raspberry Pi dengan layanan Bluemix untuk melakukan pengawasan keamanan rumah dan memberikan notifikasi kepada pengguna. Sistem mendeteksi jarak menggunakan sensor HC-SR04 terhadap objek dan apabila jarak melewati acuan, hal tersebut adalah indikasi terjadinya pencurian. Berikutnya sistem akan menyalakan buzzer sebagai keluaran suara dan mengaktifkan kamera untuk mengambil gambar lalu diunggah ke object storage Bluemix. Langkah berikutnya yaitu layanan IBM push notification memberikan notifikasi ke perangkat Android pengguna. Pengujian dilakukan dengan menghalangi pembacaan sensor sehingga terjadi indikasi pencurian. Hasilnya adalah sistem berhasil menyalakan buzzer, mengambil gambar lalu diunggah ke Bluemix, dan notifikasi berhasil masuk pada Android. Notifikasi diterima oleh file browser pada perangkat Android dan dilakukan sinkronisasi dengan object storage untuk melakukan pengunduhan berkas gambar yang telah diunggah sebelumnya.Kata kunci: Bluemix, Raspberry Pi, object sorage, IBM push notification Home security system is an implementation that needs to be done to improve the security of unwanted events. Some implementations only provide a simple notification such as alarm and cannot become strong evidence in case of theft. One of the solutions is camera placement to monitor home security in real time integrated with cloud storage. Bluemix is a provider for cloud applications that have data processing and storage services, mobile application access, monitoring and Internet of Things (IoT). System implemented was integration of Raspberry Pi with Bluemix services to conduct home security surveillance and provide notification to user. System detected distance using HC-SR04 sensor to object and if distance passes the reference, it was an indication of theft. Next, system will turned on buzzer as a sound output and activating the camera to take picture and uploaded to Bluemix Object Storage. Next step was IBM push notification service giving notification to user's Android device. The testing was done by blocking the sensor readings so that there was an indication of theft. The result was system succeeded in turning on the buzzer, taking pictures, uploading pictures to Bluemix, and notification successfully logged on Android. Notifications are received by the file browser on Android device and synchronized with object storage to download image files that have been uploaded previously.Keywords: Bluemix, Raspberry Pi, object storage, IBM push notification 


Sign in / Sign up

Export Citation Format

Share Document