scholarly journals Welding procedure research of titanium heat exchangers

2021 ◽  
Vol 261 ◽  
pp. 02002
Author(s):  
Chengjuni Jiang ◽  
Wei Wang ◽  
Qian Li ◽  
Xiaoli Zhang

In order to manufacture Gr.1 titanium heat exchangers, the welding property and weld structure of titanium tube-to-tubesheet are analyzed. The procedure of Pulse GTAW is used and the visual inspection, dimensional inspection, chemical composition, mechanical properties and metallographic structures are tested and analyzed. The results show that the weld joint can get ideal structure and good chemical composition, mechanical properties and corrosion resistance. The successful welding qualification has accumulated valuable experience for manufacture of titanium heat exchangers.

2011 ◽  
Vol 56 (17) ◽  
pp. 5898-5903 ◽  
Author(s):  
M.P. Quiroga Argañaraz ◽  
S.B. Ribotta ◽  
M.E. Folquer ◽  
L.M. Gassa ◽  
G. Benítez ◽  
...  

1984 ◽  
Vol 106 (2) ◽  
pp. 234-239
Author(s):  
N. Ellis ◽  
M. M. Salama ◽  
D. V. Beggs

The use of steel castings as major structural elements of the Hutton tension leg platform represents a relatively novel concept. In order to ensure that these castings would provide adequate service, an extensive testing program was undertaken to assess variations in chemical composition and mechanical properties of prototype castings. In addition, a rigorous acceptance procedure for production castings was developed. The results of these programs showed that steel castings possessed adequate strength and toughness. Also, a welding procedure was developed which consistently produced sound weld repair and satisfactory joints between cast and plate steel.


2014 ◽  
Vol 59 (1) ◽  
pp. 393-396 ◽  
Author(s):  
A. Kłyszewski ◽  
J. Żelechowski ◽  
A. Frontczak ◽  
P. Rutecki ◽  
W. Szymanski ◽  
...  

Abstract Clad aluminium strips are used in the automotive industry to manufacture parts of heat exchangers. They are characterised by favourable strength properties, good corrosion resistance and susceptibility to plastic deformation, and can undergo surface brazing at a temperature of about 600°C. As a result of studies, the properties of alloys for the production of clad strips have been optimised. Optimising covered the alloy chemical composition and selected parameters such as the metal condition, the mechanical properties and anti-corrosion behaviour, including the methods for corrosion potential equalisation and sacrificial protection. The obtained technological results of the clad aluminium strip production were verified under the industrial conditions of Impexmetal Huta Aluminium Konin S.A. In a laboratory of the Institute of Non-Ferrous Metals (IMN), the clad strips were tested for the pre-assumed functional properties. Mechanical properties were tested, and the structure and corrosion behaviour were characterised. The reactivity of the clad layer was analysed under different technological conditions. The thermal bond produced by these clad layers was tested by simulation of the heat exchanger manufacturing process. As a result of the conducted research it has been found that all the essential characteristics of the clad strips produced under domestic conditions are in no way different from the properties of imported strips, while modification of the alloy chemical composition has contributed to the effective sacrificial protection of heat exchangers made from these strips. Clad aluminium strips are now successfully produced by the domestic aluminium industry. The improvement of materials used for the heat exchangers can contribute to the reduced overall dimensions of these products and increased efficiency, thus leading to energy savings. The results were obtained within the framework of the Task No. ZPB/38/66716/IT2/10 executed as part of the „IniTech” Project.


2007 ◽  
Vol 534-536 ◽  
pp. 721-724 ◽  
Author(s):  
Leszek Adam Dobrzański ◽  
Z. Brytan ◽  
Marco Actis Grande ◽  
Mario Rosso

This work presents mechanical properties and corrosion resistance of duplex stainless steels obtained through powder metallurgy starting from austenitic X2CrNiMo17-12-2 (AISI 316L), martensitic X6Cr13 (AISI 410L) powders by controlled addition of alloying elements in the proper quantity to obtain the chemical composition of the structure similar to biphasic one. In the mixes preparations the Schaffler’s diagram was taken into consideration. Prepared mixes of powders have been sintered in a vacuum furnace with argon backfilling. After sintering rapid cooling was applied using nitrogen. Produced duplex stainless steels have been studied by SEM with EDS and light optical microscopy (LOM) and X-rays analysis to determine obtained structures. Corrosion properties have been studied through electrochemical methods in 1M NaCl.


2019 ◽  
Vol 85 (12) ◽  
pp. 43-50
Author(s):  
D. A. Movenko ◽  
L. V. Morozova ◽  
S. V. Shurtakov

The results of studying operational destruction of a high-loaded cardan shaft of the propeller engine made of steel 38KhN3MFA are presented to elucidate the cause of damage and develop a set of recommendations and measures aimed at elimination of adverse factors. Methods of scanning electron and optical microscopy, as well as X-ray spectral microanalysis are used to determine the mechanical properties, chemical composition, microstructure, and fracture pattern of cardan shaft fragments. It is shown that the mechanical properties and chemical composition of the material correspond to the requirements of the regulatory documentation, defects of metallurgical origin both in the shaft metal and in the fractures are absent. The microstructure of the studied shaft fragments is tempered martensite. Fractographic analysis revealed that the destruction of cardan shaft occurred by a static mechanism. The fracture surface is coated with corrosion products. The revealed cracks developed by the mechanism of corrosion cracking due to violation of the protective coating on the shaft. The results of the study showed that the destruction of the cardan shaft of a propeller engine made of steel 38Kh3MFA occurred due to formation and development of spiral cracks by the mechanism of stress corrosion cracking under loads below the yield point of steel. The reason for «neck» formation upon destruction of the shaft fragment is attributed to the yield point of steel attained during operation. Regular preventive inspections are recommended to assess the safety of the protective coating on the shaft surface to exclude formation and development of corrosion cracks.


2020 ◽  
pp. 5-18
Author(s):  
D. V. Prosvirnin ◽  
◽  
M. S. Larionov ◽  
S. V. Pivovarchik ◽  
A. G. Kolmakov ◽  
...  

A review of the literature data on the structural features of TRIP / TWIP steels, their relationship with mechanical properties and the relationship of strength parameters under static and cyclic loading was carried out. It is shown that the level of mechanical properties of such steels is determined by the chemical composition and processing technology (thermal and thermomechanical processing, hot and cold pressure treatment), aimed at achieving a favorable phase composition. At the atomic level, the most important factor is stacking fault energy, the level of which will be decisive in the formation of austenite twins and / or the formation of strain martensite. By selecting the chemical composition, it is possible to set the stacking fault energy corresponding to the necessary mechanical characteristics. In the case of cyclic loads, an important role is played by the strain rate and the maximum load during testing. So at high loading rates and a load approaching the yield strength under tension, the intensity of the twinning processes and the formation of martensite increases. It is shown that one of the relevant ways to further increase of the structural and functional properties of TRIP and TWIP steels is the creation of composite materials on their basis. At present, surface modification and coating, especially by ion-vacuum methods, can be considered the most promising direction for the creation of such composites.


Alloy Digest ◽  
1993 ◽  
Vol 42 (11) ◽  

Abstract REMANIT 4439 is a highly corrosion resistant steel with low carbon content, an addition of nitrogen to enhance both mechanical properties and corrosion resistance, and higher molybdenum than most stainless steels to resist pitting and crevice corrosion in chloride media. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-556. Producer or source: Thyssen Stahl AG.


2019 ◽  
Vol 70 (10) ◽  
pp. 3469-3472

Weldability involves two aspects: welding behavior of components and safety in operation. The two aspects will be reduced to the mechanical characteristics of the elements and to the chemical composition. In the case of steel reinforcing rebar’s, it is reduces to the percentage of Cech(carbon equivalent) and to the mechanical characteristics: the yielding limit, the ultimate limit, and the elongations which after that represent the ductility class in which the re-bars is framed. The paper will present some types of steel reinforcing rebar’s with its mechanical characteristics and the welding behavior of those elements. In the current work, process-related behavior of welded reinforcement, joint local and global mechanical properties, and their correlation with behavior of normal reinforcement and also the mechanical performance resulted in this type of joints. Keywords: welding behavior, ultimate limit, reinforcing rebar’s


Sign in / Sign up

Export Citation Format

Share Document