scholarly journals Modeling of thermal process in the energy system “Electrical network - asynchronous motor”

2021 ◽  
Vol 280 ◽  
pp. 05003
Author(s):  
Vitaliy Kuznetsov ◽  
Mykola Tryputen ◽  
Valerii Tytiuk ◽  
Zhanna Rozhnenko ◽  
Serhii Levchenko ◽  
...  

The paper discusses the influence of low-quality electricity on the temperature modes of operation of an asynchronous motor. In the course of experimental and analytical studies, the heat transfer coefficients and heat capacity of a particular electromechanical converter were determined. Experimental and analytical dependences of temperature changes of an asynchronous motor on time are given when it is connected to a supply voltage with different coefficients of sinusoidal distortion and negative sequence. The resulting model is tested for its adequacy to the real process and can be used as an element in the energy-economic model of an asynchronous motor to assess its uptime. This model that can be useful for simulation of thermal processes in asynchronous motors and optimising these devices for increasing the reliability.

2019 ◽  
Vol 104 ◽  
pp. 01006
Author(s):  
Maxim Filimonov ◽  
Nicolay Karnaukhov ◽  
Eugeny Lukyanov ◽  
Dmitry Smyatsky ◽  
Roman Mironenko

this article the energy efficient frequency way of starting of production mechanisms electrical drive with low power asynchronous motors (from 90 Wt to 5 kWt) is proposed. To provide this With the goal of electrical losses decreasing during asynchronous motor starting the Pontryagin Maximum Principle have been applied by the authors when analysing of two-mass model of production mechanism frequency controlled electrical drive. In result of calculations for frequency controlled electrical drive of production mechanism with 90 Wt power asynchronous motor of the model 4AA50A2 Dependencies of amplitude and frequency of supply voltage by the time are obtained. These dependencies confirm possibility of decreasing the electrical power losses with different values of motor shaft load torques. In compare with the other ways of asynchronous motor starting (for example U/f=const) they allow to decrease the electrical losses more then two times in nominal mode.


2019 ◽  
Vol 139 ◽  
pp. 01053
Author(s):  
Victoria Romanova ◽  
Sergey Khromov

Issues of operating modes of 4A series asynchronous squirrel-cage motors and AI serried motors at asymmetrical supply voltage for different values of motor shaft load are considered on the basis of simulation using Matlab software package and Simulink package. In the simulation, currents in asynchronous motor phases were evaluated as a function of K2U, KZ, and based on these results, permissible operation parameters were evaluated for induction motors. The results obtained are the basis for technical solutions aimed at improving operational reliability of asynchronous motors, they will allow taking into account permissible operating parameters of asynchronous motors not only in the design, but also in operation in power supply systems of various facilities.


Author(s):  
N.О. ORLOVA

Problem statement. The influence of the external climate on the thermal regime of the enclosures of premises and buildings is complex. The calculated values and combinations of parameters are determined, as a rule, taking into account the security factor of the calculated conditions. The main indicators of the cold season are the outdoor temperature and wind speed. As you know, an increase in wind speed with a constant outside air temperature causes an increase in pressure on the windward facade of the building, as a result of which the heat loss of the room, associated with heating of the incoming air, increases. Wind speed and direction have a stronger influence on the distribution of air flows in the ventilation system and on the infiltration costs than the outside temperature. A change in the outside air temperature from −15 to −30 °С leads to the same increase in air exchange in the apartment as an increase in wind speed from 3 to 6 m/s. The purpose of the article is to determine the heat transfer coefficients on the outside of an office building. Results. The basic principles of calculating heat transfer coefficients are presented. The zoning of the premises of the Institute is proposed, taking into account their thermal regime and boundary conditions on external surfaces. Scientific novelty and practical significance. The original values of the heat transfer coefficients, which are considered on the example of the climatic conditions of the city of Kharkov for the IP Mash complex of the NAS of Ukraine. On the basis of the presented methodology for determining the heat transfer coefficients, it is planned to present this building as a single energy system with three main energetically interconnected subsystems: the energy effect of the external climate on the building envelope; energy that is contained in the building envelope, that is, in the external building envelope; energy, which is contained within the volume of the building, that is, in the internal air, internal equipment, internal structures, etc. Then the mathematical model of the building as a unified energy system will consist of three submodels: the mathematical model of the influence of the external climate on the building envelope; mathematical model of heat transfer through the building envelope; mathematical model of radiant and convective heat transfer in the premises of the building.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (10) ◽  
pp. 607-618
Author(s):  
JÉSSICA MOREIRA ◽  
BRUNO LACERDA DE OLIVEIRA CAMPOS ◽  
ESLY FERREIRA DA COSTA JUNIOR ◽  
ANDRÉA OLIVEIRA SOUZA DA COSTA

The multiple effect evaporator (MEE) is an energy intensive step in the kraft pulping process. The exergetic analysis can be useful for locating irreversibilities in the process and pointing out which equipment is less efficient, and it could also be the object of optimization studies. In the present work, each evaporator of a real kraft system has been individually described using mass balance and thermodynamics principles (the first and the second laws). Real data from a kraft MEE were collected from a Brazilian plant and were used for the estimation of heat transfer coefficients in a nonlinear optimization problem, as well as for the validation of the model. An exergetic analysis was made for each effect individually, which resulted in effects 1A and 1B being the least efficient, and therefore having the greatest potential for improvement. A sensibility analysis was also performed, showing that steam temperature and liquor input flow rate are sensible parameters.


Sign in / Sign up

Export Citation Format

Share Document