scholarly journals Development of junction temperature monitoring platform for IGBT charging device adapted to the integration of charging, light and storage

2021 ◽  
Vol 292 ◽  
pp. 01020
Author(s):  
Yu Wenbin ◽  
Wu Bin ◽  
Jia Junguo ◽  
Zhang Feng

With the continuous development of new energy, the power and capacity configuration of charging devices is getting larger and larger, and there are more and more data nodes that charging devices need to manage and monitor. In order to improve the security of the system, it is necessary to monitor the node information of each device in real time. This paper summarizes the data required for high-voltage modelling and junction temperature calculation of high-voltage power electronic devices to develop a monitoring platform for charging devices. The platform records the data of each module in the charging device online, and provides measured data for equipment selection and fault analysis of the charging device. At the end of the article, some experiments were carried out to verify the operation effect of the monitoring platform.

2011 ◽  
Vol 291-294 ◽  
pp. 1704-1708
Author(s):  
Ming Chen ◽  
An Hu ◽  
Yong Tang ◽  
Bo Wang

Power electronic modules including insulated gate bipolar transistor (IGBT) are widely used in the field of power converter application. The temperature distribution inside these modules becomes more important for electrical characteristics, reliability and lifetime of integrated power electronic modules. In this paper, a seven-layer compact RC thermal component network model based on the physical structure is presented. A dynamic electro-thermal model, which is composed of electrical model, compact RC thermal component network model and electro-thermal interface is developed for the IGBT. These models interact with each other to calculate the temperature of each layer of module and parameters of each model. The thermal model determines the evolution of the temperature distribution within the thermal network and thus determines the instantaneous junction temperature used by the electrical model. Such built dynamic electro-thermal simulation methodology is implemented in the Saber circuit simulator, and the simulation result is validated by the experimental study, which adopted with infrared thermal imaging camera. The built dynamic electro-thermal model could be helpful for the research on operation performance and heat sink design for such power electronic devices.


2022 ◽  
Vol 8 ◽  
pp. 163-170
Author(s):  
Lingfeng Shao ◽  
Guoqing Xu ◽  
Weiwei Wei ◽  
Xichun Zhang ◽  
Huiyun Li ◽  
...  

2017 ◽  
Vol 897 ◽  
pp. 583-586
Author(s):  
K.C. Sampayan

A transconductance-like behavior similar to that of junction semiconductor devices is observed in photonically excited wide bandgap (WBG) semi-insulating material without a junction. This property offers the possibility of power electronic devices capable of virtually unlimited voltage and current carrying capability due to intrinsic electrical isolation of the controlling voltage from the switched high voltage. A proof of concept experiment demonstrated the transconductance-like property in burst mode switching to >16 kV, 50% duty cycle, and 75 kHz. Our eventual goal is to combine the light source, optics and the WBG material to form a compact module that is functionally equivalent to junction power electronic devices. In this paper, we present the background, our generalized approach for implementing photoconductive switching for potential applications to high repetition rate (>50 kHz), high voltage (>15 kV) power switching, our associated material measurements, and our path forward to multi-10s of ampere devices.


2021 ◽  
Vol 7 ◽  
pp. 134-140
Author(s):  
Lingfeng Shao ◽  
Zhenyun Pan ◽  
Xiaoyu Xu ◽  
Yanhui Zhang

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4176 ◽  
Author(s):  
Chaoqun Jiao ◽  
Juan Zhang ◽  
Zhibin Zhao ◽  
Zuoming Zhang ◽  
Yuanliang Fan

With the development of China’s electric power, power electronics devices such as insulated-gate bipolar transistors (IGBTs) have been widely used in the field of high voltages and large currents. However, the currents in these power electronic devices are transient. For example, the uneven currents and internal chip currents overshoot, which may occur when turning on and off, and could have a great impact on the device. In order to study the reliability of these power electronics devices, this paper proposes a miniature printed circuit board (PCB) Rogowski coil that measures the current of these power electronics devices without changing their internal structures, which provides a reference for the subsequent reliability of their designs.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4654
Author(s):  
Andrzej Wetula ◽  
Andrzej Bień ◽  
Mrunal Parekh

Measurements of medium and high voltages in a power grid are normally performed with large and bulky voltage transformers or capacitive dividers. Besides installation problems, these devices operate in a relatively narrow frequency band, which limits their usability in modern systems that are saturated with power electronic devices. A sensor that can be installed directly on a wire and can operate without a galvanic connection to the ground may be used as an alternative voltage measurement device. This type of voltage sensor can complement current sensors installed on a wire, forming a complete power acquisition system. This paper presents such a sensor. Our sensor is built using two dielectric elements with different permeability coefficients. A finite element method simulation is used to estimate the parameters of a constructed sensor. Besides simulations, a laboratory model of a sensor was built and tested in a medium-voltage substation. Our results provide a proof of concept for the presented sensor. Some errors in voltage reconstruction have been traced to an oversimplified data acquisition and transmission system, which has to be improved during the further development of the sensor.


Sign in / Sign up

Export Citation Format

Share Document