scholarly journals Discussion of 800m Composite Bridge with CFST Flying Swallow Arch and Self-anchored Suspension Cable

2021 ◽  
Vol 293 ◽  
pp. 02058
Author(s):  
ZhaoYang Chen ◽  
WenPing Xu

In view of the demand of 800 meters Super Long Span CFST arch bridge, the composite bridge of CFST flying swallow arch and self-anchored suspension cable is proposed. The thrust of flying-bird CFST arch bridge and the tension of self-anchored suspension bridge are balanced, forming a self-balanced structure system. The arch rib structure is mainly stressed, supplemented by the self-anchored suspension system, which works together and has complementary advantages. Using the single leaf hyperboloid variable section steel tube four limb space truss arch rib structure, the self-weight of the mid span arch rib section structure is reduced, the risk of construction and hoisting of the mid span section is reduced, the section size at the arch foot is increased, the mass center and stiffness center of the arch bridge structure are effectively reduced, and the stability of the super long span concrete-filled steel tube arch bridge is increased. Combined with the actual project, the parameters are designed, the Midas finite element model is established, the internal force analysis and calculation, modal analysis and buckling analysis are carried out, and the superiority of the structural technical measures is verified.

2021 ◽  
Vol 237 ◽  
pp. 04024
Author(s):  
Guangchuan Zhu ◽  
Wenping Xu ◽  
Jinfa Xu

In view of the demand of super long span pedestrian landscape bridge with curved deck, this paper proposes a kind of cable-stayed and flying-brid arch bridge with Lissajous curved arch rib and double curved bridge deck. Its plane positive projection is Lissajous curve figure, the side elevation of the arch rib is the shape of the cable-stayed and flying-brid arch, and the arch foot cable and the upper space cable between the arch ribs are installed on the Lissajous spatial curved arch rib with concrete-filled steel tube to form a self balanced structure system, which floats and drags across the river. The main arch sling and the tail cable are installed, the double curved bridge deck and the central circular sightseeing platform are suspended, and multiple groups of spatial cables work well together to complement each other, with having complementary advantages. Combined with the actual project, the parameter design is carried out, the Midas finite element model is established, the internal force of the structure is calculated, the structural dynamic mode and stability analysis are carried out, the rationality of its structural performance is verified by analysis and research.


2011 ◽  
Vol 255-260 ◽  
pp. 962-966
Author(s):  
Fan Xing ◽  
Lin Zhao ◽  
Ya Zhe Xing

In view of huge destructibility of the near-fault ground motions, structures with long natural vibration period are liable to fall into nonlinear reaction stage. Based on a full understanding of the near-fault seismic spectrum characteristics, the out-of-plane seismic response of a long span concrete-filled steel tube (CFST) arch bridge was studied in depth, and the research result could offer a reference for near-fault aseismic design.


2010 ◽  
Vol 456 ◽  
pp. 89-102 ◽  
Author(s):  
Wei Ming Yan ◽  
Yong Li ◽  
Yan Jiang Chen

Long-span bridges are always a multi-support structural system, and seismic ground motion can vary significantly over distances comparable to the length of such kind of bridges, so it’s difficult to carry out shaking table tests because of the restriction of the dimension and amount of shaking tables. This paper discusses the multiple sub-table cordwood system is used to conduct a study on the seismic testing of a three-span irregular Concrete filled steel tubular (CFST) arch bridge with the objective of investigating the dynamic performance of the bridge under spatial earthquake motions. The development and testing of the bridge model and selected experimental results are discussed then. The seismic response and response characteristics of acceleration, displacement, internal force, and strain of the structure under earthquake excitations are gained, which can provide test data and basis to evaluate the seismic performance of this CFST arch bridge or other similar structural system design.


2011 ◽  
Vol 255-260 ◽  
pp. 896-900
Author(s):  
Xiao Fei Liang ◽  
Yue Xu ◽  
Hong Jing Du

Based on the hoisting construction feature of large hinge-support tower and field circumstance, the cable hoisting system for Meng-dong river grand bridge at the west of Hunan province is designed. Studying on cable hoisting system design and construction of the CFST arch bridge, the paper takes systematic analysis and calculations on the key construction technology of the CFST arch bridge, and puts it in practice successfully which provides experience for the similar long—span bridge construction of the follow.


2013 ◽  
Vol 438-439 ◽  
pp. 917-922
Author(s):  
Zhi Wei Sun ◽  
Xiao Guang Wu

Monitoring and controlling of vertical construction for main arch ribs is most important for concrete-filled steel tube (CFST) arch bridges due to high risk. Controlling the difference of elevation between the two main arch ribs has direct influence on the mechanical behavior of lateral brace, towers and temporary hinges at arch abutments of main piers. Therefore, transverse synchronization control is the main priority in vertical rotating construction phase. Taking a half-through CFST arch bridge in Shijiazhuang City as an example, this paper make a study of transverse synchronization control of the two main arch ribs during vertical rotation. The finite element method (FEM) software-Midas is employed to simulate the main arch ribs in rotation construction phase, and maximum value of the difference of elevation between the two main arch ribs is obtained to offer reference and basis of vertical rotation construction of this bridge.


2013 ◽  
Vol 655-657 ◽  
pp. 1864-1867
Author(s):  
Kun Zhang ◽  
Jun Qing Lei ◽  
Shan Shan Cao

Suspender is an important component of through arch bridge which transfers loads from bridge deck to arch rib, and its mechanical property is closely related to the safety of whole bridge. When suspender is damaged, the change of its tension will lead to internal force redistributions of the arch bridge. In this thesis, taken Xinkai River Bridge of Harbin-Dalian high-speed railway as a case study, which is the first long-span steel-box stacked arch bridge for high-speed railway in China, a finite element model is established by using the MIDAS/Civil software. By analyzing the calculation results and comparing static performances under non-destructive conditions, the influence of damage of suspenders on steel-box stacked arch bridge is summarized, which can provide reference data for health evaluation of the bridge during service period.


2009 ◽  
Vol 614 ◽  
pp. 275-282
Author(s):  
Ji Wang ◽  
Ming Zhong Zhang ◽  
Xiao Li Guo

In recent years, concrete-filled steel tube (CFST) was developed and used extensively in civil engineering in China. In this paper, the method for stability analysis of long-span CFST arch bridge was introduced. Based on Jingyang River Bridge in Hubei province of China and finite element method, the spatial model was set up. Both linear and nonlinear stability of long-span CFST arch bridge in construction process were analyzed. The result indicated the influence of geometrical nonlinearity was small and the influence of material nonlinearity was evident. So, for analyzing the stability of long-span CFST arch bridge, the influence of geometrical nonlinearity and material nonlinearity must be considered at the same time. The results of paper were used to provide the basis for the construction control of the bridge.


2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110446
Author(s):  
Gang Wu ◽  
Wei-Xin Ren ◽  
Ya-Fei Zhu ◽  
Syed M Hussain

The butterfly-shaped concrete-filled steel tube (CFST) arch bridge is an irregular bridge with unique esthetics. In this paper, this new shape of CFST arch bridge is introduced, and a refined three-dimensional finite element model (FEM) is established to evaluate static and dynamic behavior of the bridge. In order to reduce model errors, the FEM is calibrated according to numerical analysis and field tests. Static calculation results show that the butterfly-shaped bridge has good structural performance. The bending moment and axial force of the arch ribs increase when the camber angle of suspender changing from 15° to 50°. Dynamic test is carried out by ambient vibration testing under traffic and wind-induced excitations. The modal parameters of the bridge were calculated by the stochastic subspace identification method in the time domain. In terms of natural frequencies and mode shapes, the FEM analysis was validated by experimental modal analysis. The updated model thus obtained can be treated as a baseline finite element model, which is suitable for long term monitoring and safety evaluation of the structure in different severe circumstances such as earthquakes and wind loading in future.


2013 ◽  
Vol 540 ◽  
pp. 55-62
Author(s):  
Yan Li ◽  
Jun Ma ◽  
Hong Fei Sheng ◽  
Li Hui Yin ◽  
Li Wang ◽  
...  

In construction stage, a large buffeting response would endanger construction safety and quality for a long span concrete-filled steel tube (CFST) arch bridge. Developing the study on buffeting security is indispensable to CFST arch bridge in construction stage. Combining random vibration analysis of structure with modern probability theory, taking an actual large span CFST arch bridge as example, dynamic reliability of buffeting responses research and analysis is developed, which is based on the buffeting analysis on time domain at the longest cantilever construction stage. The paper gives quantitative valuation on wind-vibration safety performance of the bridge in construction phase and offers a new thought and reference for homologous project.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhen Liu ◽  
Shibo Zhang

Seismic analysis of concrete-filled steel tube (CFST) arch bridge based on finite element method is a time-consuming work. Especially when uncertainty of material and structural parameters are involved, the computational requirements may exceed the computational power of high performance computers. In this paper, a seismic analysis method of CFST arch bridge based on artificial neural network is presented. The ANN is trained by these seismic damage and corresponding sample parameters based on finite element analysis. In order to obtain more efficient training samples, a uniform design method is used to select sample parameters. By comparing the damage probabilities under different seismic intensities, it is found that the damage probabilities of the neural network method and the finite element method are basically the same. The method based on ANN can save a lot of computing time.


Sign in / Sign up

Export Citation Format

Share Document