scholarly journals Direct Torque Control of Dual Three-Phase Permanent Magnet Synchronous Motor

2021 ◽  
Vol 297 ◽  
pp. 01017
Author(s):  
Fouad Labchir ◽  
Mhammed Hasoun ◽  
Aziz El Afia ◽  
Karim Benkirane ◽  
Mohamed Khafallah

In this paper a direct torque control strategy for dual three-phase permanent magnet synchronous motor (DTP-PMSM) is presented, the machine has two sets of three-phase stator windings spatially phase shifted by 30 electric degrees. In order to reduce the stator harmonic current, torque and flux are controlled based on regulators and Vector Space Decomposition technique. The proposed approach has the benefits of low stator current distortion and low torque ripple. The validity and the efficiency of the selected technique are confirmed by simulation results.

2013 ◽  
Vol 712-715 ◽  
pp. 2757-2760
Author(s):  
Jun Li Zhang ◽  
Yu Ren Li ◽  
Long Fei Fu ◽  
Fan Gao

In order to deeply understand the characteristics of the permanent magnet synchronous motor direct torque control method, its mathematical models were established in the two-phase stationary coordinate system, the two-phase synchronous rotating coordinate system, and x-y stator synchronous rotating coordinate system. The implementation process of direct torque control method in varied stator winding connection was analyzed in detail. In order to improve the speed and torque performance of the permanent magnet synchronous motor, the direct torque control block diagram and the space voltage vector selection table were given. Finally, the summary and outlook of reducing torque ripple in the permanent magnet synchronous motor direct torque control methods.


Author(s):  
Bowen Ning ◽  
Shanmei Cheng ◽  
Baokang Yan ◽  
Fengxing Zhou

This study investigates the direct torque control strategy of permanent magnet synchronous motor with the space vector modulation, on account of large torque fluctuation and varied switching frequency of classic direct torque control strategy. The relationship among the terminal control voltages and the torque and stator flux of the permanent magnet synchronous motor is derived through the dynamic model of motor. Accordingly, the torque and the flux closed-loop feedback control structure are established, where the error signals are regulated by the proportional and integral controllers to generate output voltages. Furthermore, the parameters of the controllers are designed through explicitly analyzing the frequency domain models of the torque control loop and the flux control loop. The accurate calculation formula of control parameters, which has both explicit setting target and definite physical meaning, is obtained. Therefore, the design of torque and flux controller parameters becomes easy in the direct torque control with space vector modulation technology, and satisfactory flux and torque control can be acquired. Finally, simulation and experimental tests are demonstrated in support of the validity of the investigated scheme and the feasibility of the proposed controller parameter design.


2021 ◽  
Vol 54 (2) ◽  
pp. 345-354
Author(s):  
Fayçal Mehedi ◽  
Habib Benbouhenni ◽  
Lazhari Nezli ◽  
Djamel Boudana

In this work, the direct torque control (DTC) is applied to the five-phase permanent magnet synchronous motor (FP-PMSM). The DTC method based on classical space vector pulse width modulation (SVPWM) is a common solution used to overcome traditional problems; such as stator flux ripple, electromagnetic torque ripple and gives more total harmonic distortion (THD) of the stator current. The actual paper is based on improving the performance of DTC-SVPWM by using the feedforward neural networks (FNNs) instead of the proportional-integral (PI) regulators and hysteresis comparators (HCs) of the conventional SVPWM strategy. This algorithm can solve the traditional PI regulators and HCs problems which are represented in responses dynamic and reduce the torque ripple, flux ripple, and the THD of stator current of FP-PMSM drives. The proposed strategy was tested in different tests with simulation using Matlab software.


Author(s):  
Xiaoxin Hou ◽  
Mingqian Wang ◽  
Guodong You ◽  
Jinming Pan ◽  
Xiating Xu ◽  
...  

The traditional direct torque control system of permanent magnet synchronous motor has many problems, such as large torque ripple and variable switching frequency. In order to improve the dynamic and static performance of the control system, a new torque control idea and speed sensorless control scheme are proposed in this paper. First, by deriving the equation of torque change rate, an improved torque controller is designed to replace the torque hysteresis controller of the traditional direct torque control. The improved direct torque control strategy can significantly reduce the torque ripple and keep the switching frequency constant. Then, based on the improved direct torque control and considering the sensitivity of the stator resistance to temperature change, a speed estimator based on the model reference adaptive method is designed. This method realizes the stator resistance on-line identification and further improves the control precision of the system. The performance of the traditional direct torque control and the improved direct torque control are compared by simulation and experiment under different operating conditions. The simulation and experimental results are presented to support the validity and effectiveness of the proposed method.


Author(s):  
Tibor Vajsz ◽  
László Számel ◽  
György Rácz

Direct torque control with space vector modulation (DTC-SVM) is one of the most promising alternatives of field-oriented control in the case of permanent magnet synchronous motor drives. This method controls the electromagnetic torque of the motor with excellent dynamics which makes it an attractive choice in the case of servo drives. In this article DTC-SVM is investigated with Matlab-Simulink simulation and it is proven that DTC-SVM has severe instability-issues during overloading and its overload-capabilities are heavily dependent on the speed. Therefore, a novel modified DTC-SVM method is proposed which is stable during overloading and its overload-capabilities are practically independent of the speed. Also, the overload-capability of the new method is superior to that of classical DTC-SVM, while the two methods are practically identical from the point of view of the torque-control dynamics and the torque-ripple generated.


Sign in / Sign up

Export Citation Format

Share Document