scholarly journals Compact, Low-cost GNSS Modules for Precise Point Positioning

2021 ◽  
Vol 310 ◽  
pp. 03001
Author(s):  
Anindya Bose ◽  
Somnath Mahato ◽  
Sukabya Dan ◽  
Atanu Santra

Global Navigation Satellite System (GNSS) uses Precise Point Positioning (PPP) technique to find out accurate geolocation information of any point. Generally, costly, geodetic GNSS receivers are used for PPP. This manuscript presents the results of studies on the usability of commercial, compact, cost-effective GNSS modules with commercial antennas for PPP in comparison to commonly used geodetic, costly receivers from India, which is a excellent location for GNSS use. Compact GNSS modules from two manufacturers are used in the study, and the encouraging results show the clear advantage of cost, size, and power requirements of such modules. The modules provide sub-cm horizontal solution accuracy which is very similar to those obtained using geodetic receivers, and around 20 cm accuracy in the vertical coordinate, which is slightly inferior to the results provided by the geodetic reveivers. Results of this novel study would be useful for implementing cost-efficient GNSS PPP in real life, in highly demanding geodetic applications including CORS establishment and PPP.

2013 ◽  
Vol 66 (3) ◽  
pp. 417-434 ◽  
Author(s):  
Changsheng Cai ◽  
Zhizhao Liu ◽  
Xiaomin Luo

Single-frequency Precise Point Positioning (PPP) using a Global Navigation Satellite System (GNSS) has been attracting increasing interest in recent years due to its low cost and large number of users. Currently, the single-frequency PPP technique is mainly implemented using GPS observations. In order to improve the positioning accuracy and reduce the convergence time, we propose the combined GPS/GLONASS Single-Frequency (GGSF) PPP approach. The approach is based on the GRoup And PHase Ionospheric Correction (GRAPHIC) to remove the ionospheric effect. The performance of the GGSF PPP was tested using both static and kinematic datasets as well as different types of precise satellite orbit and clock correction data, and compared with GPS-only and GLONASS-only PPP solutions. The results show that the GGSF PPP accuracy degrades by a few centimetres using rapid/ultra-rapid products compared with final products. For the static GGSF PPP, the position filter typically converges at 71, 33 and 59 minutes in the East, North and Up directions, respectively. The corresponding positioning accuracies are 0·057, 0·028 and 0·121 m in the East, North and Up directions. Both positioning accuracy and convergence time have been improved by approximately 30% in comparison to the results from GPS-only or GLONASS-only single-frequency PPP. A kinematic GGSF PPP test was conducted and the results illustrate even more significant benefits of increased accuracy and reliability of PPP solutions by integrating GPS and GLONASS signals.


2018 ◽  
Vol 71 (4) ◽  
pp. 769-787 ◽  
Author(s):  
Ahmed El-Mowafy

Real-time Precise Point Positioning (PPP) relies on the use of accurate satellite orbit and clock corrections. If these corrections contain large errors or faults, either from the system or by meaconing, they will adversely affect positioning. Therefore, such faults have to be detected and excluded. In traditional PPP, measurements that have faulty corrections are typically excluded as they are merged together. In this contribution, a new PPP model that encompasses the orbit and clock corrections as quasi-observations is presented such that they undergo the fault detection and exclusion process separate from the observations. This enables the use of measurements that have faulty corrections along with predicted values of these corrections in place of the excluded ones. Moreover, the proposed approach allows for inclusion of the complete stochastic information of the corrections. To facilitate modelling of the orbit and clock corrections as quasi-observations, International Global Navigation Satellite System Service (IGS) real-time corrections were characterised over a six-month period. The proposed method is validated and its benefits are demonstrated at two sites using three days of data.


2019 ◽  
Vol 11 (3) ◽  
pp. 311 ◽  
Author(s):  
Wenju Fu ◽  
Guanwen Huang ◽  
Yuanxi Zhang ◽  
Qin Zhang ◽  
Bobin Cui ◽  
...  

The emergence of multiple global navigation satellite systems (multi-GNSS), including global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), and Galileo, brings not only great opportunities for real-time precise point positioning (PPP), but also challenges in quality control because of inevitable data anomalies. This research aims at achieving the real-time quality control of the multi-GNSS combined PPP using additional observations with opposite weight. A robust multiple-system combined PPP estimation is developed to simultaneously process observations from all the four GNSS systems as well as single, dual, or triple systems. The experiment indicates that the proposed quality control can effectively eliminate the influence of outliers on the single GPS and the multiple-system combined PPP. The analysis on the positioning accuracy and the convergence time of the proposed robust PPP is conducted based on one week’s data from 32 globally distributed stations. The positioning root mean square (RMS) error of the quad-system combined PPP is 1.2 cm, 1.0 cm, and 3.0 cm in the east, north, and upward components, respectively, with the improvements of 62.5%, 63.0%, and 55.2% compared to those of single GPS. The average convergence time of the quad-system combined PPP in the horizontal and vertical components is 12.8 min and 12.2 min, respectively, while it is 26.5 min and 23.7 min when only using single-GPS PPP. The positioning performance of the GPS, GLONASS, and BDS (GRC) combination and the GPS, GLONASS, and Galileo (GRE) combination is comparable to the GPS, GLONASS, BDS and Galileo (GRCE) combination and it is better than that of the GPS, BDS, and Galileo (GCE) combination. Compared to GPS, the improvements of the positioning accuracy of the GPS and GLONASS (GR) combination, the GPS and Galileo (GE) combination, the GPS and BDS (GC) combination in the east component are 53.1%, 43.8%, and 40.6%, respectively, while they are 55.6%, 48.1%, and 40.7% in the north component, and 47.8%, 40.3%, and 34.3% in the upward component.


2021 ◽  
Vol 14 (1) ◽  
pp. 128
Author(s):  
Bing Xue ◽  
Yunbin Yuan ◽  
Han Wang ◽  
Haitao Wang

Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) is an attractive positioning technology due to its high precision and flexibility. However, the vulnerability of PPP brings a safety risk to its application in the field of life safety, which must be evaluated quantitatively to provide integrity for PPP users. Generally, PPP solutions are processed recursively based on the extended Kalman filter (EKF) estimator, utilizing both the previous and current measurements. Therefore, the integrity risk should be qualified considering the effects of all the potential observation faults in history. However, this will cause the calculation load to explode over time, which is impractical for long-time missions. This study used the innovations in a time window to detect the faults in the measurements, quantifying the integrity risk by traversing the fault modes in the window to maintain a stable computation cost. A non-zero bias was conservatively introduced to encapsulate the effect of the faults before the window. Coping with the multiple simultaneous faults, the worst-case integrity risk was calculated to overbound the real risk in the multiple fault modes. In order to verify the proposed method, simulation and experimental tests were carried out in this study. The results showed that the fixed and hold mode adopted for ambiguity resolution is critical to an integrity risk evaluation, which can improve the observation redundancy and remove the influence of the biased predicted ambiguities on the integrity risk. Increasing the length of the window can weaken the impact of the conservative assumption on the integrity risk due to the smoothing effect of the EKF estimator. In addition, improving the accuracy of observations can also reduce the integrity risk, which indicates that establishing a refined PPP random model can improve the integrity performance.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1120 ◽  
Author(s):  
Chuanzhen Sheng ◽  
Xingli Gan ◽  
Baoguo Yu ◽  
Jingkui Zhang

In urban canyon environments, Global Navigation Satellite System (GNSS) satellites are heavily obstructed with frequent rise and fall and severe multi-path errors induced by signal reflection, making it difficult to acquire precise, continuous, and reliable positioning information. To meet imperative demands for high-precision positioning of public users in complex environments, like urban canyons, and to solve the problems for GNSS/pseudolite positioning under these circumstances, the Global Navigation Satellite System (GNSS) Precision Point Positioning (PPP) algorithm combined with a pseudolite (PLS) was introduced. The former problems with the pseudolite PPP technique with distributed pseudo-satellites, which relies heavily on known points for initiation and prerequisite for previous high-precision time synchronization, were solved by means of a real-time equivalent clock error estimation algorithm, ambiguity fixing, and validation method. Experiments based on a low-cost receiver were performed, and the results show that in a weak obstructed environment with low-density building where the number of GNSS satellites was greater than seven, the accuracy of pseudolite/GNSS PPP with fixed ambiguity was better than 0.15 m; when there were less than four GNSS satellites in severely obstructed circumstances, it was impossible to obtain position by GNSS alone, but with the support of a pseudolite, the accuracy of PPP was able to be better than 0.3 m. Even without GNSS, the accuracy of PPP could be better than 0.5 m with only four pseudolites. The pseudolite/GNSS PPP algorithm presented in this paper can effectively improve availability with less GNSS or even without GNSS in constrained environments, like urban canyons in cities.


2021 ◽  
Author(s):  
Mahmoud Abd Rabbou

This dissertation develops a low-cost integrated navigation system, which integrates multi-constellation global navigation satellite system (GNSS) precise point positioning (PPP) with a low-cost micro-electro-mechanical sensor (MEMS)-based inertial system for precise applications. Both undifferenced and between-satellite single-difference (BSSD) ionosphere-free linear combinations of pseudorange and carrier phase measurements from three GNSS constellations, namely GPS, GLONASS and Galileo, are processed. An improved version of the PF, the unscented particle filter (UPF), which combines the UKF and the PF, is developed to merge the corrected GNSS satellite difference observations and inertial measurements and estimate inertial measurements biases and errors. The performance of the proposed integrated system is analyzed using real test scenarios. A tightly coupled GPS PPP/MEMS-based inertial system is first developed using EKF, which shows that decimeter-level positioning accuracy is achievable with both undifferenced and BSSD modes. However, in general, better positioning precision is obtained when BSSD linear combination is used. During GPS outages, the integrated system shows submeter-level accuracy in most cases when a 60-second outage is introduced. However, the positioning accuracy is improved to a few decimeter- and decimeter-level accuracy when 30- and 10-second GPS outages are introduced, respectively. The use of UPF, on the other hand, reduces the number of samples significantly, in comparison with the traditional PF. Additionally, in comparison with EKF, the use of UPF improves the positioning accuracy during the 60-second GPS outages by 14%, 13% and 15% in latitude, longitude and altitude, respectively. The addition of GLONASS and Galileo observations to the developed integrated system shows that decimeter- to centimeter-level positioning accuracy is achievable when the GNSS measurement updates are available. In comparison with the GPS-based integrated system, the multi-constellation GNSS PPP/MEMS-based inertial system improves the latitude, longitude and altitude components precision by 24%, 41% and 41%, respectively. In addition, the use of BSSD mode improves the precision of the latitude, longitude and altitude components by 23%, 15% and 13%, respectively, in comparison with the undifferenced mode. During complete GNSS outages, the developed integrated system continues to achieve decimeter-level accuracy for up to 30 seconds, while it achieves submeter-level accuracy when a 60-second outage is introduced.


2018 ◽  
Vol 72 (1) ◽  
pp. 34-52 ◽  
Author(s):  
Fuxin Yang ◽  
Lin Zhao ◽  
Liang Li ◽  
Shaojun Feng ◽  
Jianhua Cheng

Real-time Precise Point Positioning (PPP) has been evolved as a cost-effective technique for highly precise maritime positioning. For a long period, maritime PPP technology has mainly relied on the Global Positioning System (GPS). With the revitalisation of GLONASS and the emerging BeiDou navigation satellite system (BDS), it is now feasible to investigate real-time navigation performance of multi-constellation maritime PPP with GPS, BDS and GLONASS. In this contribution, we focus on maritime PPP performance using real world maritime kinematic data and real-time satellite correction products. The results show that BDS has lower position accuracy and slower convergence time than GPS. The BDS and GPS combination has the best performance among the dual-constellation configurations. Meanwhile, the integration of BDS, GLONASS and GPS significantly improves the position accuracy and the convergence time. Some outliers in the single constellation configuration can be mitigated when multi-constellation observations are utilised.


2018 ◽  
Vol 71 (6) ◽  
pp. 1363-1380 ◽  
Author(s):  
Ke Su ◽  
Shuanggen Jin

Tropospheric delay is one of the main error sources in Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP). Zenith Hydrostatic Delay (ZHD) accounts for 90% of the total delay. This research focuses on the improvements of ZHD from tropospheric models and real meteorological data on the PPP solution. Multi-GNSS PPP experiments are conducted using the datasets collected at Multi-GNSS Experiments (MGEX) network stations. The results show that the positioning accuracy of different GNSS PPP solutions using the meteorological data for ZHD correction can achieve an accuracy level of several millimetres. The average convergence time of a PPP solution for the BeiDou System (BDS), the Global Positioning System (GPS), Global Navigation Satellite System of Russia (GLONASS), BDS+GPS, and BDS+GPS+GLONASS+Galileo are 55·89 min, 25·88 min, 33·30 min, 20·50 min and 15·71 min, respectively. The results also show that atmospheric parameters provided by real meteorological data have little effect on the horizontal components of positioning compared to the meteorological model, while in the vertical component, the positioning accuracy is improved by 90·6%, 33·0%, 22·2% and 19·8% compared with the standard atmospheric model, University of New Brunswick (UNB3m) model, Global Pressure and Temperature (GPT) model, and Global Pressure and Temperature-2 (GPT2) model and the convergence times are decreased 51·2%, 32·8%, 32·5%, and 32·3%, respectively.


Author(s):  
Bilal Muhammad ◽  
Ramjee Prasad ◽  
Marco Nisi2 ◽  
Fabio Menichetti2 ◽  
Ernestina Cianca ◽  
...  

Global Navigation Satellite System (GNSS) Real Time Kinematic (RTK) employs high-end dual-frequency receivers and antennas to deliver precise positioning that, in some way, restricts the use of GNSSRTKto a subset of user market due to very high cost. The emerging mass-market user applications, however, require centimeter-positioning accuracy considering a cost-effective solution. This calls for low-cost GNSS RTK solutions to create new possibilities for mass-market user applications to make use of GNSS high accuracy positioning in a variety of ways. One of the applications, which makes use of low-cost GNSS RTK receiver, is the maintenance of photovoltaic (PV) plants using Unmanned Aerial Vehicle (UAV). This paper proposes a solution that aims at automating the maintenance of PV plant with enhanced reliability in a time and cost effective manner, which otherwise requires intermediate human intervention. The paper presents the architectural concept, system design, and end-to-end algorithm that plays a pivotal role in enabling the automatic report generation of PV plant status. Preliminary results of the proof-of-concept shows the feasibility of the proposed solution.  


Sign in / Sign up

Export Citation Format

Share Document