Modeling stationary moving medium by static magneto-electric material

2019 ◽  
Vol 85 (1) ◽  
pp. 10901
Author(s):  
Szabolcs Gyimóthy

The electromagnetic equivalence of a stationary moving medium to magneto-electric materials is studied. The equivalent material characteristics of the medium at rest is obtained in terms of the diffusion tensor coefficient of the governing partial differential equation. Special attention is paid to the transition condition of field quantities on the boundary of the moving medium; it is found that the nonmoving magneto-electric equivalent model must be supplied with surface sources. The method is demonstrated through examples and verified by finite element simulation.

2021 ◽  
Vol 4 (1) ◽  
pp. 1-18
Author(s):  
Gokul KC ◽  
Ram Prasad Dulal

Poisson equation is an elliptic partial differential equation, a generalization of Laplace equation. Finite element method is a widely used method for numerically solving partial differential equations. Adaptive finite element method distributes more mesh nodes around the area where singularity of the solution happens. In this paper, Poisson equation is solved using finite element method in a rectangular domain with Dirichlet and Neumann boundary conditions. Posteriori error analysis is used to mark the refinement area of the mesh. Dorfler adaptive algorithm is used to refine the marked mesh. The obtained results are compared with exact solutions and displayed graphically.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 349
Author(s):  
Joël Chaskalovic

A probabilistic approach is developed for the exact solution u to a deterministic partial differential equation as well as for its associated approximation uh(k) performed by Pk Lagrange finite element. Two limitations motivated our approach: On the one hand, the inability to determine the exact solution u relative to a given partial differential equation (which initially motivates one to approximating it) and, on the other hand, the existence of uncertainties associated with the numerical approximation uh(k). We, thus, fill this knowledge gap by considering the exact solution u together with its corresponding approximation uh(k) as random variables. By a method of consequence, any function where u and uh(k) are involved are modeled as random variables as well. In this paper, we focus our analysis on a variational formulation defined on Wm,p Sobolev spaces and the corresponding a priori estimates of the exact solution u and its approximation uh(k) in order to consider their respective Wm,p-norm as a random variable, as well as the Wm,p approximation error with regards to Pk finite elements. This will enable us to derive a new probability distribution to evaluate the relative accuracy between two Lagrange finite elements Pk1 and Pk2,(k1<k2).


1993 ◽  
Vol 03 (01) ◽  
pp. 19-34 ◽  
Author(s):  
S. FINZI VITA

We consider the numerical approximation of optimal design problems governed by an elliptic partial differential equation, in the relaxed formulation recently introduced by Buttazzo and Dal Maso. A discrete optimality condition is derived for the solution of the optimization problem in the finite element setting, by means of which a convergent algorithm is generated. We discuss the numerical results of its application on different examples.


Sign in / Sign up

Export Citation Format

Share Document