scholarly journals Thermomechanical analysis of Natural Rubber behaviour stressed at room temperature.

2010 ◽  
Vol 6 ◽  
pp. 25008
Author(s):  
R. Caborgan ◽  
J.M. Muracciole ◽  
B. Wattrisse ◽  
A. Chrysochoos
2015 ◽  
Vol 754-755 ◽  
pp. 230-234 ◽  
Author(s):  
Suwimon Siriwong ◽  
Adisai Rungvichaniwat ◽  
Pairote Klinpituksa ◽  
Khalid Hamid Musa ◽  
Aminah Abdullah

Fresh field natural rubber was coagulated by acetic acid, soaked in water at room temperature (WRT) or 70°C (W70) for 1 hr, and then dried in an oven at 40°C. Non-soaked natural rubber samples (NoW) served as a control. Two grades of natural rubber, namely air-dry sheet (ADS) and ribbed smoked sheet No.3 (RSS3) derived from the same latex, were also investigated. All dry rubber samples were characterized with Lovibond colorimeter according to ASTM D3157, as well as with a HunterLab spectrophotometer. Furthermore, all the dry rubber samples were dissolved in a chloroform:methanol mixture (4:1 v:v). The rubber was then precipitated out of the solution with methanol, and the remaining solution was quantitatively analyzed for total phenolic content (TPC). The plasticity retention index (PRI) was determined for all the dried rubber samples according to ASTM D3194. It was found that WRT, W70 and ADS were similar in lightness L*, while RSS3 had the lowest L*. W70 had the lowest redness a*, which increased in the order WRT, NoW, RSS3 and ADS. W70 also had the lowest yellowness b*, which increased in the order RSS3, NoW and WRT and ADS. Moreover, TPC was the lowest for the W70 sample, increasing in the order ADS, WRT, NoW and RSS3. The PRI was highest for W70, and decreased in the order WRT, RSS3, NoW and ADS. All of the PRI values observed were comparatively high relative to blocked standard Thai rubber 20 (STR20).


1964 ◽  
Vol 37 (4) ◽  
pp. 866-877 ◽  
Author(s):  
M. Lowman ◽  
H. E. Keller

Abstract When the recipe is basically the same, different polymers differ in dynamic rate and damping. Ethylene—propylene terpolymer, SBR, neoprene, and butyl gave higher dynamic rate and higher damping than natural rubber, polyisoprene, and the blend of polyisoprene and cis 1,4-polybutadiene. The lowest dynamic rate and lowest damping is obtained with polyisoprene. At room temperature, polymers having the highest damping also have the largest ratio of dynamic to static rate. One cannot predict the effect of temperature on dynamic rate by measuring static rate at these temperatures. Increase in temperature lowers dynamic rate, decrease in temperature increases it. This effect was least with a blend of polyisoprene and cis 1,4-polybutadiene, closely followed by polyisoprene, and natural rubber. The largest change was with butyl. Dynamic rate increases with time after cure. After 26 hr, dynamic rate is a function of the logarithm of time. This effect is least with polyisoprene. Natural rubber, SBR, EPT, neoprene and a blend of polyisoprene with cis 1,4-polybutadiene all follow Equation (1). Butyl has, by far, the greatest change in dynamic rate with time. Reducing the deflection from 0.012 in. to 0.004 in. linearly increased the dynamic rate. Times of vibration between 2 minutes and 60 minutes at room temperature had no effect on dynamic rate.


2014 ◽  
Vol 28 ◽  
pp. 163-170 ◽  
Author(s):  
Khuzaimah Nazir ◽  
Siti Fadzilah Ayub ◽  
Ahmad Fairoz Aziz ◽  
Ab Malik Marwan Ali ◽  
Muhd Zu Azhan Yahya

In this study, a freestanding thin film composed of lithium triflate (LiTf) salt (30-40 wt.%) and epoxidized-30% poly (methyl methacrylate)-grafted natural rubber (EMG30) (50, 54.6, 62.3 mol %) were prepared by a solvent cast technique. The EMG30 were found to increase the ionic conductivity of EMG30-LiTf by one order of magnitude compared to MG30-LiTf. The highest ionic conductivity achieved was 5.584 x10-3Scm-1at room temperature when 40 wt.% of LiTf salts were introduced into 62.3 mol % EMG30. The ionic conduction mechanisms in EMG30-LiTf electrolytes obey Arrhenius rule in which the ion transport in these materials is thermally assisted.


1985 ◽  
Vol 58 (1) ◽  
pp. 67-85 ◽  
Author(s):  
C. S. L. Baker ◽  
I. R. Gelling ◽  
R. Newell

Abstract When natural rubber is epoxidized under carefully controlled conditions, it can be converted to a totally new polymer with some properties more akin to speciality rubbers and some properties that appear to be advantageous for tire treads. Three levels of epoxidation have been extensively evaluated. They were 50, 25 and 10 mole% epoxidized NR referred to as ENR-50, ENR-25 and ENR-10 respectively. ENR-50 has been found to undergo strain crystallization like NR, but with oil resistance similar to a medium acrylonitrile NBR and gas permeability similar to butyl rubber. It is a highly damping rubber with a very low room-temperature resilience. ENR-50 and ENR-25 both exhibit good wet grip characteristics and have been examined as tire tread materials. In particular, ENR-25 compounds containing silica or silica/black have been found to give lower rolling resistance than NR and better wet traction than OESBR, so providing an ideal combination of these two properties for tire treads. Unfortunately, wear data is as yet incomplete, but it is anticipated, from truck tire experience, that the black/silica compounds will present no problems. ENR-25 and ENR-50 exhibit this unique feature with silica of reinforcement equivalent to black without the use of a coupling reagent. Thus, these rubbers have potential of providing white or colored vulcanizates with properties previously associated only with black-filled compounds, so extending applicational areas, or even resulting in colored tires or other automotive parts. ENR-10 provides a damping grade of NR when lower resiliences are required. Alternatively, blends of ENR-25 or -50 with NR may be used. Many engineering applications are calling for reduced resilience, and this new form of NR can give precisely this.


2006 ◽  
Vol 79 (4) ◽  
pp. 553-560 ◽  
Author(s):  
Rani Joseph

Abstract HXNBR (Hydrogenated Carboxylated Nitrile Rubber) has very good heat ageing resistance and oil resistance. A novel accelerator system is designed to bring about the vulcanization of HXNBR at room temperature. The room temperature cured samples showed good mechanical properties equivalent to those of high (150 °C) temperature cured samples. Natural rubber vulcanizates are highly prone to oxidative and ozone degradation. The oil resistance of natural rubber vulcanizates is also very low. The oil resistance, ozone and oxidative degradation resistance of natural rubber vulcanizates are considerably improved by placing a thin coating of HXNBR over it.


2013 ◽  
Vol 858 ◽  
pp. 184-189
Author(s):  
Siti Rohana Yahya ◽  
Farah Nadiah Hamdan ◽  
Azura A. Rashid ◽  
Baharin Azahari

The main objective of this study was to investigate the effect of the pre-vulcanization temperature on mechanical and rheological properties of starch filled natural rubber (NR) latex films. The 10 phr filler loading of starch was added into the latex prior to the pre-vulcanization process at 60°C to 140°C. The dipped films were cured in the oven at 100°C for 20 minutes and cooled at room temperature for 24 hours before stripping. The rheological properties of NR latex compounds were studied based on the viscosity measurement. The tensile and tear tests of starch filled NR latex films were also carried out. The results indicated that the rheological properties of the latex compounds showed shear thickening behavior where viscosity was increased with the increase in shear rate and pre-vulcanization temperature proportionally. The pre-vulcanization temperature at 80°C showed the optimum mechanical properties of starch filled NR latex films.


2013 ◽  
Vol 812 ◽  
pp. 138-144 ◽  
Author(s):  
Mohamed Rahmah ◽  
Wan Zain Norazira ◽  
Shafie Nur Ashyikin ◽  
Mohd Nurazzi Norizan

Recently, aromatic oil (AO) is one of the substances that is typically used as a processing aid especially for high filler loadings in formulating rubber compound. Aromatic oil has disadvantages in that, it is hazardous to environment, toxic and has been labeled as carcinogenic. In this research, an epoxidised oil (EO) and aromatic oil were used to investigate the effect incorporation of oil onto the SBR/NR natural rubber vulcanizates (NR). From the result obtained, EO showed shorter cure time and scorch time as the oil loading were increased up to 20 pphr of EO. Physical properties such as hardness and rebound resilience of NR/EO vulcanisate were also investigated upon exposure to different humidity level in humidity chamber. At room temperature, the hardness of EO loading onto the SBR/NR vulcanisate is lower than AO loadings. Hardness was slightly decreased with increasing rate of humidity. There is great difference in hardness and rebound resilience values between AO and EO. Both hardness and rebound resilience were not affected by humidity. This implies the existence of good filler interaction with EO and rubber which do not impart changes in the hardness and resilience properties of rubber compound. Epoxidised oil has great promising potential to replace the carcinogenic aromatic oil as it has good overall performance and renewable in nature .


Sign in / Sign up

Export Citation Format

Share Document