scholarly journals Quantum shape phase transitions from spherical to deformed for Bose-Fermi systems: the effect of the odd particle around the critical point

2014 ◽  
Vol 66 ◽  
pp. 02014 ◽  
Author(s):  
M. Böyükata ◽  
C. E. Alonso ◽  
J. M. Arias ◽  
L. Fortunato ◽  
A. Vitturi
2009 ◽  
Vol 23 (20n21) ◽  
pp. 4059-4073 ◽  
Author(s):  
J. W. CLARK ◽  
V. A. KHODEL ◽  
M. V. ZVEREV

Opportunities for topological phase transitions in strongly correlated Fermi systems near a quantum critical point are explored as an alternative to collective scenarios for experimentally observed departures from standard Fermi-liquid behavior. Attention is focused on a quantum critical point at which the effective mass is divergent due to vanishing of the quasiparticle group velocity at the Fermi surface. Working within the original Landau quasiparticle theory, it is demonstrated that the quasiparticle picture can remain meaningful beyond the quantum critical point through rearrangements of the unstable normal Fermi surface and quasiparticle spectrum. Two possibilities emerge at zero temperature, depending on whether the quasiparticle interaction is regular or singular at zero momentum transfer. In the regular case, one type of topological phase transformation leads to a state with a multiconnected Fermi surface. In the singular case, another type of topological phase transition leads to an exceptional state containing a fermion condensate – the Fermi surface swells into a volume in momentum space, within which partial occupation prevails and quasiparticle energies are pinned to the chemical potential. As the temperature increases from zero to a characteristic value Tm, a crossover can occur from the state with multiple Fermi surfaces to that containing a fermion condensate.


2012 ◽  
Vol 27 (01n03) ◽  
pp. 1345032 ◽  
Author(s):  
T. WERLANG ◽  
G. A. P. RIBEIRO ◽  
GUSTAVO RIGOLIN

We review the main results and ideas showing that quantum correlations at finite temperatures (T), in particular quantum discord, are useful tools in characterizing quantum phase transitions (QPT) that only occur, in principle, at the unattainable absolute zero temperature. We first review some interesting results about the behavior of thermal quantum discord for small spin-1/2 chains and show that they already give us important hints of the infinite chain behavior. We then study in detail and in the thermodynamic limit (infinite chains) the thermal quantum correlations for the XXZ and XY models, where one can clearly appreciate that the behavior of thermal quantum discord at finite T is a useful tool to spotlight the critical point of a QPT.


2019 ◽  
Vol 33 (09) ◽  
pp. 1950111 ◽  
Author(s):  
Ayse Humeyra Bilge ◽  
Arif Selcuk Ogrenci ◽  
Onder Pekcan

It has been shown that reversible and irreversible phase transitions of biogels can be represented by epidemic models. The irreversible chemical sol–gel transitions are modeled by the Susceptible-Exposed-Infected-Removed (SEIR) or Susceptible-Infected-Removed (SIR) epidemic systems whereas reversible physical gels are modeled by a modification of the Susceptible-Infected-Susceptible (SIS) system. Measured sol–gel and gel–sol transition data have been fitted to the solutions of the epidemic models, either by solving the differential equations directly (SIR and SEIR models) or by nonlinear regression (SIS model). The gel point is represented as the “critical point of sigmoid,” defined as the limit point of the locations of the extreme values of its derivatives. Then, the parameters of the sigmoidal curve representing the gelation process are used to predict the gel point and its relative position with respect to the transition point, that is, the maximum of the first derivative with respect to time. For chemical gels, the gel point is always located before the maximum of the first derivative and moves backward in time as the strength of the activation increases. For physical gels, the critical point for the sol–gel transition occurs before the maximum of the first derivative with respect to time, that is, it is located at the right of this maximum with respect to temperature. For gel–sol transitions, the critical point is close to the transition point; the critical point occurs after the maximum of the first derivative for low concentrations whereas the critical point occurs after the maximum of the first derivative for higher concentrations.


1973 ◽  
Vol 21 (2) ◽  
pp. 461-474 ◽  
Author(s):  
L. De Cesare ◽  
A. Forlani ◽  
G. Platania

2010 ◽  
Vol 19 (08n09) ◽  
pp. 1570-1576
Author(s):  
Z. CHEN ◽  
R. WADA ◽  
A. BONASERA ◽  
T. KEUTGEN ◽  
K. HAGEL ◽  
...  

The experimental results reveal the isospin dependence of the nuclear phase transition in terms of the Landau Free Energy description of critical phenomena. Near the critical point, different ratios of the neutron to proton concentrations lead to different critical points for the phase transition which is analogous to the phase transitions in He 4- He 3 liquid mixtures. The antisymmetrized molecular dynamics (AMD) and GEMINI models calculations were also performed and the results will be discussed as well.


Sign in / Sign up

Export Citation Format

Share Document