scholarly journals Search for bound-state electron+positron pair decay

2016 ◽  
Vol 123 ◽  
pp. 04003 ◽  
Author(s):  
F. Bosch ◽  
S. Hagmann ◽  
P.-M. Hillenbrand ◽  
G. J. Lane ◽  
Yu. A. Litvinov ◽  
...  
1964 ◽  
Vol 42 (10) ◽  
pp. 1908-1913 ◽  
Author(s):  
A. Held ◽  
S. Kahana

A variational search is made for a quasi-bound state of an electron–positron pair in a metal. The basic equation used is the effective Schrödinger equation derived from the electron–positron propagator in an approximation which accurately accounts for the two-body correlations. It is found that no such state exists in metals and hence it can have no influence on the positron annihilation rates. However, the state appears for electron gases of sufficiently low density, [Formula: see text],* and thus determines the low-density annihilation rates.


2016 ◽  
Vol 31 (02n03) ◽  
pp. 1641031 ◽  
Author(s):  
S. P. Gavrilov ◽  
D. M. Gitman

We consider QED with strong external backgrounds that are concentrated in restricted space areas. The latter backgrounds represent a kind of spatial x-electric potential steps for charged particles. They can create particles from the vacuum, the Klein paradox being closely related to this process. We describe a canonical quantization of the Dirac field with x-electric potential step in terms of adequate in- and out-creation and annihilation operators that allow one to have consistent particle interpretation of the physical system under consideration and develop a nonperturbative (in the external field) technics to calculate scattering, reflection, and electron-positron pair creation. We resume the physical impact of this development.


2012 ◽  
Vol 29 (2) ◽  
pp. 021102 ◽  
Author(s):  
Bai-Song Xie ◽  
Mohamedsedik Melike ◽  
Dulat Sayipjamal

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
J. J. Geng ◽  
Y. F. Huang

The detection of optical rebrightenings and X-ray plateaus in the afterglows of gamma-ray bursts (GRBs) challenges the generic external shock model. Recently, we have developed a numerical method to calculate the dynamics of the system consisting of a forward shock and a reverse shock. Here, we briefly review the applications of this method in the afterglow theory. By relating these diverse features to the central engines of GRBs, we find that the steep optical rebrightenings would be caused by the fall-back accretion of black holes, while the shallow optical rebrightenings are the consequence of the injection of the electron-positron-pair wind from the central magnetar. These studies provide useful ways to probe the characteristics of GRB central engines.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Felix Karbstein

Abstract We show that the leading derivative corrections to the Heisenberg-Euler effective action can be determined efficiently from the vacuum polarization tensor evaluated in a homogeneous constant background field. After deriving the explicit parameter-integral representation for the leading derivative corrections in generic electromagnetic fields at one loop, we specialize to the cases of magnetic- and electric-like field configurations characterized by the vanishing of one of the secular invariants of the electromagnetic field. In these cases, closed-form results and the associated all-orders weak- and strong-field expansions can be worked out. One immediate application is the leading derivative correction to the renowned Schwinger-formula describing the decay of the quantum vacuum via electron-positron pair production in slowly-varying electric fields.


Sign in / Sign up

Export Citation Format

Share Document