scholarly journals Quasi-Vector Model of Propagation of Polarized Light in a Thin-Film Waveguide Lens

2018 ◽  
Vol 173 ◽  
pp. 02007 ◽  
Author(s):  
Dmitriy Divakov ◽  
Mikhail Malykh ◽  
Leonid Sevastianov ◽  
Anton Sevastianov ◽  
Edik Ayryan

Maxwell equations describe the propagation with diffraction of waveguide modes through a thin-film waveguide lens. If the radius of the thin-film lens is large, then the thickness of the lens varies slowly in the yz plane. For this case we propose the model, which is based on the assumption of a small change in the electromagnetic field in a direction y. Under this assumption the vector diffraction problem is reduced to a number of scalar diffraction problems. The solutions demonstrate the vector nature of the electromagnetic field, which allows us to call the proposed model a quasi-vector model.

2002 ◽  
Vol 14 (04) ◽  
pp. 409-420 ◽  
Author(s):  
VIERI BENCI ◽  
DONATO FORTUNATO FORTUNATO

This paper is divided in two parts. In the first part we construct a model which describes solitary waves of the nonlinear Klein-Gordon equation interacting with the electromagnetic field. In the second part we study the electrostatic case. We prove the existence of infinitely many pairs (ψ, E), where ψ is a solitary wave for the nonlinear Klein-Gordon equation and E is the electric field related to ψ.


2013 ◽  
Vol 22 (04) ◽  
pp. 1350017 ◽  
Author(s):  
GINÉS R. PÉREZ TERUEL

We derive a new set of field equations within the framework of the Palatini formalism. These equations are a natural generalization of the Einstein–Maxwell equations which arise by adding a function [Formula: see text], with [Formula: see text] to the Palatini Lagrangian f(R, Q). The result we obtain can be viewed as the coupling of gravity with a nonlinear extension of the electromagnetic field. In addition, a new method is introduced to solve the algebraic equation associated to the Ricci tensor.


2013 ◽  
Vol 325-326 ◽  
pp. 519-524
Author(s):  
Lian Liu ◽  
Qiong Lin Li ◽  
Hui Jin Liu ◽  
Xue Cui ◽  
Lei Zou

Beginning with characterizing the nonlinearities of transformer, this paper uses the J-A model to represent the hysteresis of iron core, and fits the model in calculating exciting current. Compared with the other methods, such as polynomial and describing function method, J-A model is more capable in representing nonlinearity, so the calculated current would be more accurate. Then, after analyzing Maxwell equations that meet certain boundary conditions, the paper considers comprehensively the effects of skin and proximity, and then obtains the computing way of ac resistance under harmonics. At last, based on the mentioned results, paper proposes a set of three-phase transformer model which could calculate harmonic losses. The proposed model is a kind of combined time-and frequency-domain model that possesses good convergence. The introduced example has verified the correctness and effectiveness of the model which absolutely suits the engineering applications.


2015 ◽  
Vol 52 (6) ◽  
pp. 061401
Author(s):  
杨晓冬 Yang Xiaodong ◽  
陈书汉 Chen Shuhan ◽  
朱健 Zhu Jian

2020 ◽  
Vol 35 (21) ◽  
pp. 2050170
Author(s):  
Yu. M. Pismak ◽  
D. Shukhobodskaia

In the model with Chern-Simons potential describing the coupling of electromagnetic field with a two-dimensional material, the possibility of the appearance of bound field states, vanishing at sufficiently large distances from interacting with its macro-objects, is considered. As an example of such two-dimensional material object we consider a homogeneous isotropic plane. Its interaction with electromagnetic field is described by a modified Maxwell equation with singular potential. The analysis of their solution shows that the bound state of field cannot arise without external charges and currents. In the model with currents and charges the Chern-Simons potential in the modified Maxwell equations creates bound state in the form of the electromagnetic wave propagating along the material plane with exponentially decreasing amplitude in the orthogonal to its direction.


Green’s functions are obtained for the boundary-value problems of mixed type describing the general two-dimensional diffraction problems at a screen in the form of a half-plane (Sommerfeld’s problem), applicable to acoustically rigid or soft screens, and to the full electromagnetic field at a perfectly conducting screen.


Sign in / Sign up

Export Citation Format

Share Document