scholarly journals A Scientific Workflow System for Satellite Data Processing with Real-Time Monitoring

2018 ◽  
Vol 173 ◽  
pp. 05012
Author(s):  
Minh Duc Nguyen

This paper provides a case study on satellite data processing, storage, and distribution in the space weather domain by introducing the Satellite Data Downloading System (SDDS). The approach proposed in this paper was evaluated through real-world scenarios and addresses the challenges related to the specific field. Although SDDS is used for satellite data processing, it can potentially be adapted to a wide range of data processing scenarios in other fields of physics.

2017 ◽  
Vol 17 (4) ◽  
pp. 850-868 ◽  
Author(s):  
William Soo Lon Wah ◽  
Yung-Tsang Chen ◽  
Gethin Wyn Roberts ◽  
Ahmed Elamin

Analyzing changes in vibration properties (e.g. natural frequencies) of structures as a result of damage has been heavily used by researchers for damage detection of civil structures. These changes, however, are not only caused by damage of the structural components, but they are also affected by the varying environmental conditions the structures are faced with, such as the temperature change, which limits the use of most damage detection methods presented in the literature that did not account for these effects. In this article, a damage detection method capable of distinguishing between the effects of damage and of the changing environmental conditions affecting damage sensitivity features is proposed. This method eliminates the need to form the baseline of the undamaged structure using damage sensitivity features obtained from a wide range of environmental conditions, as conventionally has been done, and utilizes features from two extreme and opposite environmental conditions as baselines. To allow near real-time monitoring, subsequent measurements are added one at a time to the baseline to create new data sets. Principal component analysis is then introduced for processing each data set so that patterns can be extracted and damage can be distinguished from environmental effects. The proposed method is tested using a two-dimensional truss structure and validated using measurements from the Z24 Bridge which was monitored for nearly a year, with damage scenarios applied to it near the end of the monitoring period. The results demonstrate the robustness of the proposed method for damage detection under changing environmental conditions. The method also works despite the nonlinear effects produced by environmental conditions on damage sensitivity features. Moreover, since each measurement is allowed to be analyzed one at a time, near real-time monitoring is possible. Damage progression can also be given from the method which makes it advantageous for damage evolution monitoring.


Author(s):  
Kevin Lesniak ◽  
Conrad S. Tucker

The method presented in this work reduces the frequency of virtual objects incorrectly occluding real-world objects in Augmented Reality (AR) applications. Current AR rendering methods cannot properly represent occlusion between real and virtual objects because the objects are not represented in a common coordinate system. These occlusion errors can lead users to have an incorrect perception of the environment around them when using an AR application, namely not knowing a real-world object is present due to a virtual object incorrectly occluding it and incorrect perception of depth or distance by the user due to incorrect occlusions. The authors of this paper present a method that brings both real-world and virtual objects into a common coordinate system so that distant virtual objects do not obscure nearby real-world objects in an AR application. This method captures and processes RGB-D data in real-time, allowing the method to be used in a variety of environments and scenarios. A case study shows the effectiveness and usability of the proposed method to correctly occlude real-world and virtual objects and provide a more realistic representation of the combined real and virtual environments in an AR application. The results of the case study show that the proposed method can detect at least 20 real-world objects with potential to be incorrectly occluded while processing and fixing occlusion errors at least 5 times per second.


2021 ◽  
Vol 4 ◽  
Author(s):  
Roman Zweifel ◽  
Sophia Etzold ◽  
David Basler ◽  
Reinhard Bischoff ◽  
Sabine Braun ◽  
...  

The TreeNet research and monitoring network has been continuously collecting data from point dendrometers and air and soil microclimate using an automated system since 2011. The goal of TreeNet is to generate high temporal resolution datasets of tree growth and tree water dynamics for research and to provide near real-time indicators of forest growth performance and drought stress to a wide audience. This paper explains the key working steps from the installation of sensors in the field to data acquisition, data transmission, data processing, and online visualization. Moreover, we discuss the underlying premises to convert dynamic stem size changes into relevant biological information. Every 10 min, the stem radii of about 420 trees from 13 species at 61 sites in Switzerland are measured electronically with micrometer precision, in parallel with the environmental conditions above and below ground. The data are automatically transmitted, processed and stored on a central server. Automated data processing (R-based functions) includes screening of outliers, interpolation of data gaps, and extraction of radial stem growth and water deficit for each tree. These long-term data are used for scientific investigations as well as to calculate and display daily indicators of growth trends and drought levels in Switzerland based on historical and current data. The current collection of over 100 million data points forms the basis for identifying dynamics of tree-, site- and species-specific processes along environmental gradients. TreeNet is one of the few forest networks capable of tracking the diurnal and seasonal cycles of tree physiology in near real-time, covering a wide range of temperate forest species and their respective environmental conditions.


2016 ◽  
Vol 3 (5) ◽  
pp. e231-e238 ◽  
Author(s):  
Art F Y Poon ◽  
Réka Gustafson ◽  
Patricia Daly ◽  
Laura Zerr ◽  
S Ellen Demlow ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2473
Author(s):  
Julia C. Steinbach ◽  
Markus Schneider ◽  
Otto Hauler ◽  
Günter Lorenz ◽  
Karsten Rebner ◽  
...  

The chemical synthesis of polysiloxanes from monomeric starting materials involves a series of hydrolysis, condensation and modification reactions with complex monomeric and oligomeric reaction mixtures. Real-time monitoring and precise process control of the synthesis process is of great importance to ensure reproducible intermediates and products and can readily be performed by optical spectroscopy. In chemical reactions involving rapid and simultaneous functional group transformations and complex reaction mixtures, however, the spectroscopic signals are often ambiguous due to overlapping bands, shifting peaks and changing baselines. The univariate analysis of individual absorbance signals is hence often only of limited use. In contrast, batch modelling based on the multivariate analysis of the time course of principal components (PCs) derived from the reaction spectra provides a more efficient tool for real-time monitoring. In batch modelling, not only single absorbance bands are used but information over a broad range of wavelengths is extracted from the evolving spectral fingerprints and used for analysis. Thereby, process control can be based on numerous chemical and morphological changes taking place during synthesis. “Bad” (or abnormal) batches can quickly be distinguished from “normal” ones by comparing the respective reaction trajectories in real time. In this work, FTIR spectroscopy was combined with multivariate data analysis for the in-line process characterization and batch modelling of polysiloxane formation. The synthesis was conducted under different starting conditions using various reactant concentrations. The complex spectral information was evaluated using chemometrics (principal component analysis, PCA). Specific spectral features at different stages of the reaction were assigned to the corresponding reaction steps. Reaction trajectories were derived based on batch modelling using a wide range of wavelengths. Subsequently, complexity was reduced again to the most relevant absorbance signals in order to derive a concept for a low-cost process spectroscopic set-up which could be used for real-time process monitoring and reaction control.


Sign in / Sign up

Export Citation Format

Share Document