scholarly journals Aerosol absorption profiling from the synergy of lidar and sun-photometry: the ACTRIS-2 campaigns in Germany, Greece and Cyprus

2018 ◽  
Vol 176 ◽  
pp. 08005 ◽  
Author(s):  
Alexandra Tsekeri ◽  
Vassilis Amiridis ◽  
Anton Lopatin ◽  
Eleni Marinou ◽  
Eleni Giannakaki ◽  
...  

Aerosol absorption profiling is crucial for radiative transfer calculations and climate modelling. Here, we utilize the synergy of lidar with sun-photometer measurements to derive the absorption coefficient and single scattering albedo profiles during the ACTRIS-2 campaigns held in Germany, Greece and Cyprus. The remote sensing techniques are compared with in situ measurements in order to harmonize and validate the different methodologies and reduce the absorption profiling uncertainties.

2019 ◽  
Author(s):  
Guillaume Jouvet ◽  
Eef van Dongen ◽  
Martin P. Lüthi ◽  
Andreas Vieli

Abstract. Measuring the ice flow motion accurately is essential to better understand the time evolution of glaciers and ice sheets, and therefore to better anticipate the future consequence of climate change in terms of sea-level rise. Although there exist a variety of remote sensing methods to fill this task, in-situ measurements are always needed for validation or to capture high temporal resolution movements. Yet glaciers are in general hostile environments where the installation of instruments might be tedious and risky when not impossible. Here we report the first-ever in-situ measurements of ice flow motion using a remotely controlled Unmanned Aerial Vehicle (UAV). We used a multicopter UAV to land on a highly crevassed area of Eqip Sermia Glacier, West Greenland, to measure the displacement of the glacial surface with the aid of an on-board differential GNSS receiver. Despite the unfortunate loss of the UAV, we measured approximately 70 cm of displacement over 4.36 hours without setting foot onto the glacier – a result validated by applying UAV photogrammetry and template matching techniques. Our study demonstrates that UAVs are promising instruments for in-situ monitoring, and have a great potential for capturing short-term ice flow variations in inaccessible glaciers – a task that remote sensing techniques can hardly achieve.


2017 ◽  
Vol 58 ◽  
pp. 10.1-10.21 ◽  
Author(s):  
J. Bühl ◽  
S. Alexander ◽  
S. Crewell ◽  
A. Heymsfield ◽  
H. Kalesse ◽  
...  

Abstract State-of-the-art remote sensing techniques applicable to the investigation of ice formation and evolution are described. Ground-based and spaceborne measurements with lidar, radar, and radiometric techniques are discussed together with a global view on past and ongoing remote sensing measurement campaigns concerned with the study of ice formation and evolution. This chapter has the intention of a literature study and should illustrate the major efforts that are currently taken in the field of remote sensing of atmospheric ice. Since other chapters of this monograph mainly focus on aircraft in situ measurements, special emphasis is put on active remote sensing instruments and synergies between aircraft in situ measurements and passive remote sensing methods. The chapter concentrates on homogeneous and heterogeneous ice formation in the troposphere because this is a major topic of this monograph. Furthermore, methods that deliver direct, process-level information about ice formation are elaborated with a special emphasis on active remote sensing methods. Passive remote sensing methods are also dealt with but only in the context of synergy with aircraft in situ measurements.


2016 ◽  
Author(s):  
Aurélien Chauvigné ◽  
Karine Sellegri ◽  
Maxime Hervo ◽  
Nadège Montoux ◽  
Patrick Freville ◽  
...  

Abstract. Aerosols influence the Earth radiative budget through scattering and absorption of solar radiation. Several methods are used to investigate aerosol properties and thus quantify their direct and indirect impacts on climate. At the Puy de Dôme station, continuous high altitude near surface in-situ measurements and low altitude ground-based remote sensing atmospheric column measurements give the opportunity to compare the aerosol extinction measured with both methods over a one year period. To our knowledge, it is the first time that such a comparison is realized with continuous measurements of a high altitude site during a long term period. This comparison addresses to which extend near surface in-situ measurements are representative of the whole atmospheric column, the aerosol Mixing Layer (ML), or the Free Troposphere (FT). In particular, the impact of multi aerosol layers events detected using LIDAR backscatter profiles is analysed. A good correlation between in-situ aerosol extinction coefficient and Aerosol Optical Depth (AOD) measured by the Aerosol Robotic Network (AERONET) Sun photometer is observed with a correlation coefficient around 0.80, indicating that the in-situ measurements station is representative of the overall atmospheric column. After filtering for multilayer cases and correcting for each layer optical contribution (ML and FT), the atmospheric structure seems to be the main factor influencing the comparison between the two measurement techniques. When the site lies in the ML, the in-situ extinction represents 45 % of the Sun photometer ML extinction while when the site lies within the FT, the in-situ extinction is more than two times higher than the FT Sun photometer extinction. Remote sensing retrievals of the aerosol particle size distributions (PSD) from the Sun photometer observations are then compared to the near surface in-situ measurements, at dry and at ambient relative humidities. When in-situ measurements are considered at dry state, the in-situ fine mode diameters are 44 % higher than the Sun photometer-retrieved diameters and in-situ volume concentrations are 20 % lower than of the Sun photometer-retrieved fine mode concentration. Using a parametrised hygroscopic growth factor applied to aerosol diameters, the difference between in-situ and retrieved diameters grows larger. Coarse mode in-situ diameter and concentrations show a good correlation with retrieved particle size distributions from remote sensing.


2016 ◽  
Vol 9 (9) ◽  
pp. 4569-4585 ◽  
Author(s):  
Aurélien Chauvigné ◽  
Karine Sellegri ◽  
Maxime Hervo ◽  
Nadège Montoux ◽  
Patrick Freville ◽  
...  

Abstract. Aerosols influence the Earth radiative budget through scattering and absorption of solar radiation. Several methods are used to investigate aerosol properties and thus quantify their direct and indirect impacts on climate. At the Puy de Dôme station, continuous high-altitude near-surface in situ measurements and low-altitude ground-based remote sensing atmospheric column measurements give the opportunity to compare the aerosol extinction measured with both methods over a 1-year period. To our knowledge, it is the first time that such a comparison is realised with continuous measurements of a high-altitude site during a long-term period. This comparison addresses to which extent near-surface in situ measurements are representative of the whole atmospheric column, the aerosol mixing layer (ML) or the free troposphere (FT). In particular, the impact of multi-aerosol layers events detected using lidar backscatter profiles is analysed. A good correlation between in situ aerosol extinction coefficient and aerosol optical depth (AOD) measured by the Aerosol Robotic Network (AERONET) sun photometer is observed with a correlation coefficient around 0.80, indicating that the in situ measurements station is representative of the overall atmospheric column. After filtering for multilayer cases and correcting for each layer optical contribution (ML and FT), the atmospheric structure seems to be the main factor influencing the comparison between the two measurement techniques. When the site lies in the ML, the in situ extinction represents 45 % of the sun photometer ML extinction while when the site lies within the FT, the in situ extinction is more than 2 times higher than the FT sun photometer extinction. Moreover, the assumption of a decreasing linear vertical aerosol profile in the whole atmosphere has been tested, significantly improving the instrumental agreement. Remote sensing retrievals of the aerosol particle size distributions (PSDs) from the sun photometer observations are then compared to the near-surface in situ measurements, at dry and at ambient relative humidities. When in situ measurements are considered at dry state, the in situ fine mode diameters are 44 % higher than the sun-photometer-retrieved diameters and in situ volume concentrations are 20 % lower than those of the sun-photometer-retrieved fine mode concentration. Using a parameterised hygroscopic growth factor applied to aerosol diameters, the difference between in situ and retrieved diameters grows larger. Coarse mode in situ diameters and concentrations show a good correlation with retrieved PSDs from remote sensing.


2018 ◽  
Author(s):  
Ioana Elisabeta Popovici ◽  
Philippe Goloub ◽  
Thierry Podvin ◽  
Luc Blarel ◽  
Rodrigue Loisil ◽  
...  

Abstract. The majority of ground-based aerosols observations are limited to fixed locations, narrowing the knowledge on their spatial variability. In order to overcome this issue, a compact Mobile Aerosol Monitoring System (MAMS) was developed to explore the aerosol vertical and spatial variability. This mobile laboratory is equipped with a micropulse lidar, a sun-photometer and an aerosol spectrometer. It is distinguished by other transportable platforms through its ability to perform on-road measurements and its unique feature lies in the sun-photometer capable to track the sun during motion. The system presents a great flexibility, being able to respond quickly in case of sudden aerosol events such as pollution episodes, dust, fire or volcano outbreaks. On-road mapping of aerosol physical parameters such as attenuated aerosol backscatter, aerosol optical depth, particle number and mass concentration and size distribution is achieved through the MAMS. The performance of remote sensing instruments on-board has been evaluated through intercomparison with instruments in reference networks (i.e. AERONET and EARLINET), showing that the system is capable of providing high quality data. This also illustrates the application of such system for instrument intercomparison field campaigns. Applications of the mobile system have been exemplified through two case studies in northern France. MODIS AOD data was compared to ground-based mobile sun-photometer data. A good correlation was observed with R2 of 0.76, showing the usefulness of the mobile system for validation of satellite-derived products. The performance of BSC-DREAM8b dust model has been tested by comparison of results from simulations to the lidar-sun-photometer derived extinction coefficient and mass concentration profiles. The comparison indicated that observations and model are in good agreement in describing the vertical variability of dust layers. Moreover, on-road measurements of PM10 were compared with modelled PM10 concentrations and with ATMO Hauts-de-France and AIRPARIF air quality in situ measurements, presenting an excellent agreement in horizontal spatial representativity of PM10. This proves a possible application of mobile platforms for evaluating the chemistry-models performances.


2021 ◽  
Vol 21 (12) ◽  
pp. 9269-9287
Author(s):  
Jose Antonio Benavent-Oltra ◽  
Juan Andrés Casquero-Vera ◽  
Roberto Román ◽  
Hassan Lyamani ◽  
Daniel Pérez-Ramírez ◽  
...  

Abstract. The Sierra Nevada Lidar aerOsol Profiling Experiment I and II (SLOPE I and II) campaigns were intended to determine the vertical structure of aerosols by remote sensing instruments and test the various retrieval schemes for obtaining aerosol microphysical and optical properties with in situ measurements. The SLOPE I and II campaigns were developed during the summers of 2016 and 2017, respectively, combining active and passive remote sensing with in situ measurements at stations belonging to the AGORA observatory (Andalusian Global ObseRvatory of the Atmosphere) in the Granada area (Spain). In this work, we use the in situ measurements of these campaigns to evaluate aerosol properties retrieved by the GRASP code (Generalized Retrieval of Atmosphere and Surface Properties) combining lidar and sun–sky photometer measurements. We show an overview of aerosol properties retrieved by GRASP during the SLOPE I and II campaigns. In addition, we evaluate the GRASP retrievals of total aerosol volume concentration (discerning between fine and coarse modes), extinction and scattering coefficients, and for the first time we present an evaluation of the absorption coefficient. The statistical analysis of aerosol optical and microphysical properties, both column-integrated and vertically resolved, from May to July 2016 and 2017 shows a large variability in aerosol load and types. The results show a strong predominance of desert dust particles due to North African intrusions. The vertically resolved analysis denotes a decay of the atmospheric aerosols with an altitude up to 5 km a.s.l. Finally, desert dust and biomass burning events were chosen to show the high potential of GRASP to retrieve vertical profiles of aerosol properties (e.g. absorption coefficient and single scattering albedo) for different aerosol types. The aerosol properties retrieved by GRASP show good agreement with simultaneous in situ measurements (nephelometer, aethalometer, scanning mobility particle sizer, and aerodynamic particle sizer) performed at the Sierra Nevada Station (SNS) in Granada. In general, GRASP overestimates the in situ data at the SNS with a mean difference lower than 6 µm3 cm−3 for volume concentration, and 11 and 2 Mm−1 for the scattering and absorption coefficients. On the other hand, the comparison of GRASP with airborne measurements also shows an overestimation with mean absolute differences of 14 ± 10 and 1.2 ± 1.2 Mm−1 for the scattering and absorption coefficients, showing a better agreement for the absorption (scattering) coefficient with higher (lower) aerosol optical depth. The potential of GRASP shown in this study will contribute to enhancing the representativeness of the aerosol vertical distribution and provide information for satellite and global model evaluation.


2018 ◽  
Vol 11 (8) ◽  
pp. 4671-4691 ◽  
Author(s):  
Ioana Elisabeta Popovici ◽  
Philippe Goloub ◽  
Thierry Podvin ◽  
Luc Blarel ◽  
Rodrigue Loisil ◽  
...  

Abstract. The majority of ground-based aerosols observations are limited to fixed locations, narrowing the knowledge on their spatial variability. In order to overcome this issue, a compact Mobile Aerosol Monitoring System (MAMS) was developed to explore the aerosol vertical and spatial variability. This mobile laboratory is equipped with a micropulse lidar, a sun photometer and an aerosol spectrometer. It is distinguished from other transportable platforms through its ability to perform on-road measurements and its unique feature lies in the sun photometer's capacity for tracking the sun during motion. The system presents a great flexibility, being able to respond quickly in case of sudden aerosol events such as pollution episodes, dust, fire or volcano outbreaks. On-road mapping of aerosol physical parameters such as attenuated aerosol backscatter, aerosol optical depth, particle number and mass concentration and size distribution is achieved through the MAMS. The performance of remote sensing instruments on-board has been evaluated through intercomparison with instruments in reference networks (i.e. AERONET and EARLINET), showing that the system is capable of providing high quality data. This also illustrates the application of such a system for instrument intercomparison field campaigns. Applications of the mobile system have been exemplified through two case studies in northern France. MODIS AOD data was compared to ground-based mobile sun photometer data. A good correlation was observed with R2 of 0.76, showing the usefulness of the mobile system for validation of satellite-derived products. The performance of BSC-DREAM8b dust model has been tested by comparison of results from simulations for the lidar–sun-photometer derived extinction coefficient and mass concentration profiles. The comparison indicated that observations and the model are in good agreement in describing the vertical variability of dust layers. Moreover, on-road measurements of PM10 were compared with modelled PM10 concentrations and with ATMO Hauts-de-France and AIRPARIF air quality in situ measurements, presenting an excellent agreement in horizontal spatial representativity of PM10. This proves a possible application of mobile platforms for evaluating the chemistry-models performances.


2021 ◽  
Author(s):  
Jose Antonio Benavent-Oltra ◽  
Juan Andrés Casquero-Vera ◽  
Roberto Román ◽  
Hassan Lyamani ◽  
Daniel Pérez-Ramírez ◽  
...  

Abstract. The Sierra Nevada Lidar aerOsol Profiling Experiment I and II (SLOPE I and II) campaigns were intended to determine the vertical structure of the aerosol by remote sensing instruments and test the various retrieval schemes for obtaining aerosol microphysical and optical properties with in-situ measurements. These campaigns deployed a set of in-situ and remote sensing instruments at the stations include in AGORA observatory (Andalusian Global ObseRvatory of the Atmosphere) in the Granada area (Spain) along summer in 2016 and 2017. In this work, using the in-situ measurements performed at a high-altitude station, Sierra Nevada station, and airborne flights, we evaluate the retrievals of aerosol properties by GRASP code (Generalized Retrieval of Atmosphere and Surface Properties) combining lidar and sun-sky photometer measurements. Besides, we show an overview of aerosol properties retrieved by GRASP during SLOPE I and II campaigns. We evaluate the GRASP retrievals of total aerosol volume concentration (discerning between fine and coarse modes), extinction and scattering coefficients, and for the first time we present an evaluation of absorption coefficient. The statistical analysis of the aerosol optical and microphysical properties, both column-integrated and vertically-resolved, from May to July 2016 and 2017 shows a large variability in aerosol load and types. The results show a strong predominance of desert dust particles due to the North African intrusions. The vertically-resolved analysis denotes a decay of the atmospheric aerosols with altitude up to 5 km a.s.l. Finally, two events of desert dust and biomass burning were used to show the high potential of GRASP to retrieve and study the aerosol properties profiles such as absorption coefficient and single scattering albedo for different aerosol types. The aerosol properties retrieved by GRASP show good agreement with simultaneous in situ measurements performed at Sierra Nevada Station (SNS) in Granada. In general, GRASP overestimates the in situ data at SNS with a mean difference lower than 6 µm3/cm3 for volume concentration, 11 Mm−1 and 2 Mm−1 for scattering and absorption coefficient. On the other hand, the comparison of GRASP with airborne measurements also shows an overestimation with mean absolute differences of 14 ± 10 Mm−1 and 1.2 ± 1.2 Mm−1 for scattering and absorption coefficients, showing a better agreement for absorption (scattering) coefficient with higher (lower) aerosol optical depth. The potentiality of GRASP showed in this study will contribute to enhancing the representativeness of the aerosol vertical distribution and provide information for satellite and global model evaluation.


Sign in / Sign up

Export Citation Format

Share Document