scholarly journals Vertical variability of aerosol single-scattering albedo and equivalent black carbon concentration based on in-situ and remote sensing techniques during the iAREA campaigns in Ny-Ålesund

2017 ◽  
Vol 164 ◽  
pp. 431-447 ◽  
Author(s):  
K.M. Markowicz ◽  
C. Ritter ◽  
J. Lisok ◽  
P. Makuch ◽  
I.S. Stachlewska ◽  
...  
2021 ◽  
Author(s):  
Meloë S. F. Kacenelenbogen ◽  
Qian Tan ◽  
Sharon P. Burton ◽  
Otto P. Hasekamp ◽  
Karl D. Froyd ◽  
...  

Abstract. Improvements in air quality and Earth’s climate predictions require improvements of the aerosol speciation in chemical transport models, using observational constraints. Aerosol speciation (e.g., organic aerosols, black carbon, sulfate, nitrate, ammonium, dust or sea salt) is typically determined using in situ instrumentation. Continuous, routine surface network aerosol composition measurements are not uniformly widespread over the globe. Satellites, on the other hand, can provide a maximum coverage of the horizontal and vertical atmosphere but observe aerosol optical properties (and not aerosol speciation) based on remote sensing instrumentation. Combinations of satellite-derived aerosol optical properties can inform on air mass aerosol types (AMTs e.g., clean marine, dust, polluted continental). However, these AMTs are subjectively defined, might often be misclassified and are hard to relate to the critical parameters that need to be refined in models. In this paper, we derive AMTs that are more directly related to sources and hence to speciation. They are defined, characterized, and derived using simultaneous in situ gas-phase, chemical and optical instruments on the same aircraft during the Study of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS, US, summer of 2013). First, we prescribe well-informed AMTs that display distinct aerosol chemical and optical signatures to act as a training AMT dataset. These in situ observations reduce the errors and ambiguities in the selection of the AMT training dataset. We also investigate the relative skill of various combinations of aerosol optical properties to define AMTs and how much these optical properties can capture dominant aerosol speciation. We find distinct optical signatures for biomass burning (from agricultural or wildfires), biogenic and dust-influence AMTs. Useful aerosol optical properties to characterize these signatures are the extinction angstrom exponent (EAE), the single scattering albedo, the difference of single scattering albedo in two wavelengths, the absorption coefficient, the absorption angstrom exponent (AAE), and the real part of the refractive index (RRI). We find that all four AMTs studied when prescribed using mostly airborne in situ gas measurements, can be successfully extracted from at least three combinations of airborne in situ aerosol optical properties (e.g., EAE, AAE and RRI) over the US during SEAC4RS. However, we find that the optically based classifications for BB from agricultural fires and polluted dust include a large percentage of misclassifications that limit the usefulness of results relating to those classes. The technique and results presented in this study are suitable to develop a representative, robust and diverse source-based AMT database. This database could then be used for widespread retrievals of AMTs using existing and future remote sensing suborbital instruments/networks. Ultimately, it has the potential to provide a much broader observational aerosol data set to evaluate chemical transport and air quality models than is currently available by direct in situ measurements. This study illustrates how essential it is to explore existing airborne datasets to bridge chemical and optical signatures of different AMTs, before the implementation of future spaceborne missions (e.g., the next generation of Earth Observing System (EOS) satellites addressing Aerosol, Cloud, Convection and Precipitation (ACCP) designated observables).


2018 ◽  
Vol 176 ◽  
pp. 08005 ◽  
Author(s):  
Alexandra Tsekeri ◽  
Vassilis Amiridis ◽  
Anton Lopatin ◽  
Eleni Marinou ◽  
Eleni Giannakaki ◽  
...  

Aerosol absorption profiling is crucial for radiative transfer calculations and climate modelling. Here, we utilize the synergy of lidar with sun-photometer measurements to derive the absorption coefficient and single scattering albedo profiles during the ACTRIS-2 campaigns held in Germany, Greece and Cyprus. The remote sensing techniques are compared with in situ measurements in order to harmonize and validate the different methodologies and reduce the absorption profiling uncertainties.


2008 ◽  
Vol 8 (17) ◽  
pp. 5161-5186 ◽  
Author(s):  
R. M. Garland ◽  
H. Yang ◽  
O. Schmid ◽  
D. Rose ◽  
A. Nowak ◽  
...  

Abstract. The scattering and absorption of solar radiation by atmospheric aerosols is a key element of the Earth's radiative energy balance and climate. The optical properties of aerosol particles are, however, highly variable and not well characterized, especially near newly emerging mega-cities. In this study, aerosol optical properties were measured at a rural site approximately 60 km northwest of the mega-city Guangzhou in southeast China. The measurements were part of the PRIDE-PRD2006 intensive campaign, covering the period of 1–30 July 2006. Scattering and absorption coefficients of dry aerosol particles with diameters up to 10 μm (PM10) were determined with a three-wavelength integrating nephelometer and with a photoacoustic spectrometer, respectively. Averaged over the measurement campaign (arithmetic mean ± standard deviation), the total scattering coefficients were 200±133 Mm−1 (450 nm), 151±103 Mm−1 (550 nm) and 104±72 Mm−1 (700 nm) and the absorption coefficient was 34.3±26.5 Mm−1 (532 nm). The average Ångström exponent was 1.46±0.21 (450 nm/700 nm) and the average single scattering albedo was 0.82±0.07 (532 nm) with minimum values as low as 0.5. The low single scattering albedo values indicate a high abundance, as well as strong sources, of light absorbing carbon (LAC). The ratio of LAC to CO concentration was highly variable throughout the campaign, indicating a complex mix of different combustion sources. The scattering and absorption coefficients, as well as the Ångström exponent and single scattering albedo, exhibited pronounced diurnal cycles, which can be attributed to boundary layer mixing effects and enhanced nighttime emissions of LAC (diesel soot from regulated truck traffic). The daytime average mid-visible single scattering albedo of 0.87 appears to be more suitable for climate modeling purposes than the 24-h average of 0.82, as the latter value is strongly influenced by fresh emissions into a shallow nocturnal boundary layer. In spite of high photochemical activity during daytime, we found no evidence for strong local production of secondary aerosol mass. The average mass scattering efficiencies with respect to PM10 and PM1 concentrations derived from particle size distribution measurements were 2.8 m2 g−1 and 4.1 m2 g−1, respectively. The Ångström exponent exhibited a wavelength dependence (curvature) that was related to the ratio of fine and coarse particle mass (PM1/PM10) as well as the surface mode diameter of the fine particle fraction. The results demonstrate consistency between in situ measurements and a remote sensing formalism with regard to the fine particle fraction and volume mode diameter, but there are also systematic deviations for the larger mode diameters. Thus we suggest that more data sets from in situ measurements of aerosol optical parameters and particle size distributions should be used to evaluate formalisms applied in aerosol remote sensing. Moreover, we observed a negative correlation between single scattering albedo and backscatter fraction, and we found that it affects the impact that these parameters have on aerosol radiative forcing efficiency and should be considered in model studies of the PRD and similarly polluted mega-city regions.


Author(s):  
Borut Jereb ◽  
Brigita Gajšek ◽  
Gregor Šipek ◽  
Špela Kovše ◽  
Matevz Obrecht

Black carbon is one of the riskiest particle matter pollutants that is harmful to human health. Although it has been increasingly investigated, factors that depend on black carbon distribution and concentration are still insufficiently researched. Variables, such as traffic density, wind speeds, and ground levels can lead to substantial variations of black carbon concentrations and potential exposure, which is even riskier for people living in less-airy sites. Therefore, this paper “fills the gaps” by studying black carbon distribution variations, concentrations, and oscillations, with special emphasis on traffic density and road segments, at multiple locations, in a small city located in a basin, with frequent temperature inversions and infrequent low wind speeds. As wind speed has a significant impact on black carbon concentration trends, it is critical to present how low wind speeds influence black carbon dispersion in a basin city, and how black carbon is dependent on traffic density. Our results revealed that when the wind reached speeds of 1 ms−1, black carbon concentrations actually increased. In lengthy wind periods, when wind speeds reached 2 or 3 ms−1, black carbon concentrations decreased during rush hour and in the time of severe winter biomass burning. By observing the results, it could be concluded that black carbon persists longer in higher altitudes than near ground level. Black carbon concentration oscillations were also seen as more pronounced on main roads with higher traffic density. The more the traffic decreases and becomes steady, the more black carbon concentrations oscillate.


2021 ◽  
Author(s):  
Shuoqiu Wu ◽  
Xiaoyan Ma

<p>The melting of glaciers and snow on the Qinghai-Tibet Plateau, known as the Earth’s “Third Pole” and “World Water Tower”, is source of fresh water for hundreds of millions of people in South Asia, Southeast Asia, and East Asia, but it is now suffering from an unprecedented crisis. The black carbon deposited on the surface of the glacier will reduce the snow albedo and absorb more solar radiation, leading to accelerated melting of ice and snow.Previous studies have shown that black carbon from South Asia is one of the main sources of the Qinghai-Tibet Plateau, and the transportation of black carbon to the Qinghai-Tibet Plateau presents obviously seasonal differences.However, the transport of black carbon from South Asia to the Qinghai-Tibet Plateau in different seasons shows a completely opposite trend to wind field conditions.This study uses the WRF-Chem model to study the transmission mechanism of South Asian black carbon to the Tibetan Plateau in April (pre-monsoon), July (summer monsoon) and December (winter monsoon).MIX emission inventory and Peking University's global black carbon emission inventory (PKU-BC) were involved to analyze the seasonal distribution of black carbon concentration, dry and wet deposition in the Qinghai-Tibet Plateau and South Asia, and the distribution of BC concentration and wind field at different altitudes.Combined with the vertical distribution of BC concentration across the Himalayas, the transport mechanism of black carbon in South Asia to Qinghai-Tibet Plateau in different seasons is studied.In the selected three months, December had the highest surface black carbon concentration in South Asia and the Qinghai-Tibet Plateau, while July had the lowest black carbon concentration; Mainly because of the large amount of wet deposition of black carbon brought about by the heavy precipitation in South Asia in July;According to the vertical distribution of black carbon,black carbon can climb up the hillside and eventually reach the southern slope of the Qinghai-Tibet Plateau in April. In July, black carbon is mainly distributed below 3km. In December, black carbon can be uplifted to 4-5km, and finally transported into Qinghai-Tibet Plateau.</p>


Author(s):  
Richard H. Bennett ◽  
Huon Li ◽  
Michael D. Richardson ◽  
Peter Fleischer ◽  
Douglas N. Lambert ◽  
...  

2019 ◽  
Author(s):  
Mohanan R. Manoj ◽  
Sreedharan K. Satheesh ◽  
Krishnaswamy K. Moorthy ◽  
Hugh Coe

Abstract. Vertical structures of aerosol single scattering albedo (SSA), from near the surface through the free troposphere, have been estimated for the first time at distinct geographical locations over the Indian mainland and adjoining oceans, using in-situ measurements of aerosol scattering and absorption coefficients aboard the FAAM BAe-146 aircraft during the South West Asian Aerosol Monsoon Interactions (SWAAMI) campaign from June to July 2016. These are used to examine the spatial variation of SSA profiles and also to characterize its transformation from just prior to the onset of Indian Summer Monsoon (June 2016) to its active phase (July 2016). Very strong aerosol absorption, with SSA values as low as 0.7, persisted in the lower altitudes (


Sign in / Sign up

Export Citation Format

Share Document