scholarly journals Tensile Properties of AM Maraging steel

2018 ◽  
Vol 183 ◽  
pp. 01058 ◽  
Author(s):  
Philip Church ◽  
Mark Reynolds ◽  
Peter Gould ◽  
Robin Oakley ◽  
Nigel Harrison ◽  
...  

Additively Manufactured (AM) materials have great potential for producing graded materials, embedded structures and near net complex shapes. AM maraging steel properties have been compared with wrought maraging steel. The comparison featured interrupted tensile tests over a range of temperatures and strain rates. In addition a specially designed Tensile Split Hopkinson Pressure Bar (TSHPB) has been built to test very high strength metals at high strain rates. The results showed that the AM maraging steel was much more ductile than expected and exhibited significant necking under all conditions tested. All the samples exhibited ductile fracture. Although not as ductile as the wrought material, the AM material could be cost effective through economies of scale for complex components. The microstructure contained inclusions which derived from either the powder or the AM process and thus there is significant potential to improve these materials further. A modified Armstrong-Zerilli model was also constructed for these materials and shown to predict the raw experimental data within experimental error using DYNA3D simulations.

2018 ◽  
Vol 183 ◽  
pp. 01053
Author(s):  
Xueyang Li ◽  
Christian C. Roth ◽  
Dirk Mohr

Plasticity and fracture experiments are carried out on flat smooth and notched tensile specimens extracted from DP800 steel sheets. A split Hopkinson pressure bar testing system equipped with a load inversion device is utilized to reach high strain rates. Temperature dependent experiments ranging from 20°C to 300°C are performed at quasi-static strain rates. The material exposes a monotonic strain hardening behaviour with a non-monotonic temperature dependency. The rate-independent material behaviour at room-temperature is described with a non-associated Hill’48 plasticity model and an Swift-Voce strain hardening. A machine learning based model is used multiplicatively to capture the rate and temperature responses. A good agreement between measured and simulated force-displacement curves as well as local surface is obtained. The loading paths to fracture are then extracted to facilitate further development of a temperature dependent fracture initiation model.


2013 ◽  
Vol 535-536 ◽  
pp. 497-500 ◽  
Author(s):  
Zhi Wu Zhu ◽  
Guo Zheng Kang ◽  
Dong Ruan ◽  
Yue Ma ◽  
Guo Xing Lu

5083 aluminum alloy was investigated with respect to its uniaxial dynamic compressive properties over a range of strain rates using the split Hopkinson pressure bar (SHPB). The dynamic stress-strain curves of this alloy were obtained for strain rates from 1000 s-1 to 6000 s-1. Effects of strain rate, the samples size and anti-impact capability were analyzed. The experimental results show that under impaction loading, 5083 aluminum alloy has a remarkable strengthening response to strain rate and size; in particular, the responded stress increases with increasing strain rate, which implies that this alloy has high strength and high anti-impact capability.


2018 ◽  
Vol 183 ◽  
pp. 04005 ◽  
Author(s):  
Bar Nurel ◽  
Moshe Nahmany ◽  
Adin Stern ◽  
Nahum Frage ◽  
Oren Sadot

Additive manufacturing by Selective Laser Melting of metals is attracting substantial attention, due to its advantages, such as short-time production of customized structures. This technique is useful for building complex components using a metallic pre-alloyed powder. One of the most used materials in AMSLM is AlSi10Mg powder. Additively manufactured AlSi10Mg may be used as a structural material and it static mechanical properties were widely investigated. Properties in the strain rates of 5×102–1.6×103 s-1 and at higher strain rates of 5×103 –105 s-1 have been also reported. The aim of this study is investigation of dynamic properties in the 7×102–8×103 s-1 strain rate range, using the split Hopkinson pressure bar technique. It was found that the dynamic properties at strain-rates of 1×103–3×103 s-1 depend on a build direction and affected by heat treatment. At higher and lower strain-rates the effect of build direction is limited. The anisotropic nature of the material was determined by the ellipticity of samples after the SHPB test. No strain rate sensitivity was observed.


2013 ◽  
Vol 718-720 ◽  
pp. 112-116
Author(s):  
Xu Yang Li ◽  
Rui Yuan Huang ◽  
Yong Chi Li ◽  
Guang Fa Gao

The Split Hopkinson Pressure Bar (SHPB) is used to investigate the dynamic compressive mechanical behavior of a new foamed ceramic composite under impact loading. The stress versus strain curves are obtained under high strain rates. The test results are considered to be able to assure conformability of the tests, validate the stress equilibrium assumption, and show that the stress versus strain curves of foamed ceramic composite display strain hardening effect and damage softening effect as brittle materials. Meanwhile the curve includes short plateau region while no densification region.


This paper describes a modification of the split Hopkinson pressure bar, to allow compression testing of high strength metals at a strain rate of up to about 10 5 s –1 . All dimensions are minimized to reduce effects of dispersion and inertia, with specimens of the order of 1 mm diameter. Strain is calculated from the stress record and calibrated with high-speed photography. Particular attention has been paid to the accuracy of the technique, and errors arising from nonlinearity in the instrumentation, dispersion, frictional restraint and inertia have all been quantitatively assessed. Stress–strain results are presented of Ti 6A14V alloy, a high strength tungsten alloy, and pure copper.


2008 ◽  
Vol 368-372 ◽  
pp. 713-716 ◽  
Author(s):  
Jiang Tao Zhang ◽  
Li Sheng Liu ◽  
Peng Cheng Zhai ◽  
Qing Jie Zhang

The dynamic compressive behavior of Al2O3 (10% vol.) / TiB2 ceramic composite had been tested by using a split Hopkinson pressure bar in this paper. The results show that the main failure modes of the ceramic composite include crushed failure and split fracture along the loading direction. The former is the typical compressive failure of brittle materials. The later is tensile failure along the flaws produced during the composite manufacturing. The numerical simulation was also used to study the effect of the diameter/length ratio of the samples on the experimental results. The effect of the deformation in the bars’ ends, which contacted with the samples, was also studied in the numerical models.


Sign in / Sign up

Export Citation Format

Share Document