scholarly journals Photon splitting bound on Lorentz Violation in QED from multi-TeV photon observation.

2018 ◽  
Vol 191 ◽  
pp. 02020
Author(s):  
Konstantin Astapov ◽  
Petr Satunin ◽  
Dmitry Kirpichnikov

We calculate the width of photon splitting to three photons in a special model of quantum electrodynamics with broken Lorentz invariance. This process may lead to a sharp cut-off in a photon spectrum of a given astrophysical source. Analysing experimental data, we set a constraint on Lorentz-violating mass scale from the absence of such cut-off in the Crab Nebula spectrum.

2019 ◽  
Vol 79 (12) ◽  
Author(s):  
Petr Satunin

AbstractRecently two collaborations, Tibet and HAWC, presented new measurements of gamma-ray spectrum from Crab Nebula (Amenomori et al. in Phys Rev Lett 123(5):051101, 2019, arXiv:1906.05521 [astro-ph.HE]; Abeysekara et al. [HAWC Collaboration] in Astrophys. J. 881, 134, (2019), arXiv:1905.12518 [astro-ph.HE]) which continues beyond 100 TeV. We use these data to establish two-sided constraints on parameters of Lorentz Invariance violation in quantum electrodynamics. The limits on Lorentz violating mass scale for quartic dispersion relation are $$4.1\times 10^{14}\, \text{ GeV }$$4.1×1014GeV (photon splitting) and $$1.9\times 10^{13}\, \text{ GeV }$$1.9×1013GeV (photon decay) for superluminal case, and $$1.4\times 10^{12}$$1.4×1012 GeV (suppression of shower formation) for subluminal case.


2007 ◽  
Vol 2007 (10) ◽  
pp. 013-013 ◽  
Author(s):  
Luca Maccione ◽  
Stefano Liberati ◽  
Annalisa Celotti ◽  
John G Kirk

2014 ◽  
Vol 29 (08) ◽  
pp. 1450039 ◽  
Author(s):  
A. Moyotl ◽  
H. Novales-Sanchez ◽  
J. J. Toscano ◽  
E. S. Tututi

Low-energy Lorentz-invariant quantities could receive contributions from a fundamental theory producing small Lorentz-violating effects. Within the Lorentz-violating extension of quantum electrodynamics, we investigate, perturbatively, the contributions to the one-loop ffγ vertex from the CPT-violating axial coupling of a vector background field to fermions. We find that the resulting vertex function has a larger set of Lorentz structures than the one characterizing the usual, Lorentz-invariant, parametrization of the ffγ vertex. We prove gauge invariance of the resulting one-loop expression through a set of gauge invariant nonrenormalizable operators introducing new-physics effects at the first- and second-orders in Lorentz-violation, and which generate tree-level contributions to the ffγ vertex. Whereas loop contributions involving parameters that violate Lorentz-invariance at the first-order are CPT-odd, those arising at the second-order are CPT-even, so that contributions to low-energy physics are restricted to emerge for the first time at the second-order. In this context, we derive a contribution to anomalous magnetic moment (AMM) of fermions, which we use to set a bound on Lorentz-violation.


Author(s):  
Yuji KISHIMOTO ◽  
Shuichi GUNJI ◽  
Yushi ISHIKAWA ◽  
Makoto TAKADA ◽  
Tatehiro MIHARA ◽  
...  
Keyword(s):  

1999 ◽  
Vol 512 (2) ◽  
pp. 755-760 ◽  
Author(s):  
Mitchell C. Begelman
Keyword(s):  

1983 ◽  
Vol 101 ◽  
pp. 499-501
Author(s):  
Gregory Benford ◽  
Attilio Ferrari ◽  
Silvano Massaglia

Canonical models for pulsars predict the emission of low–frequency waves of large amplitudes, produced by the rotation of a neutron star possessing a strong surface magnetic field. Pacini (1968) proposed this as the basic drain which yields to the pulsar slowing–down rate. The main relevance of the large amplitude wave (LAW) is the energetic link it provides between the pulsar and the surrounding medium. This role has been differently emphasized (Rees and Gunn, 1974; Ferrari, 1974), referring to absorption effects by relativistic particle acceleration and thermal heating, either close to the pulsar magnetosphere or in the nebula. It has been analyzed in the special case of the Crab Nebula, where observations are especially rich (Rees, 1971). As the Crab Nebula displays a cavity around the pulsar of dimension ∼1017cm, the function of the wave in sweeping dense gas away from the circumpulsar region is widely accepted. Absorption probably occurs at the inner edges of the nebula; i.e., where the wave pressure and the nebular pressure come into balance. Ferrari (1974) interpreted the wisps of the Crab Nebula as the region where plasma absorption occurs, damping the large amplitude wave and driving “parametric” plasma turbulence, thus trasferring energy to optical radiation powering the nebula. The mechanism has been extended to interpret the specific features of the “wisps” emission (Benford et al., 1978). Possibly the wave fills the nebula completely, permeating the space outside filaments with electromagnetic energy, continuously accelerating electrons for the extended radio and optical emission (Rees, 1971).


2020 ◽  
Vol 501 (1) ◽  
pp. 337-346
Author(s):  
E Mestre ◽  
E de Oña Wilhelmi ◽  
D Khangulyan ◽  
R Zanin ◽  
F Acero ◽  
...  

ABSTRACT Since 2009, several rapid and bright flares have been observed at high energies (>100 MeV) from the direction of the Crab nebula. Several hypotheses have been put forward to explain this phenomenon, but the origin is still unclear. The detection of counterparts at higher energies with the next generation of Cherenkov telescopes will be determinant to constrain the underlying emission mechanisms. We aim at studying the capability of the Cherenkov Telescope Array (CTA) to explore the physics behind the flares, by performing simulations of the Crab nebula spectral energy distribution, both in flaring and steady state, for different parameters related to the physical conditions in the nebula. In particular, we explore the data recorded by Fermi during two particular flares that occurred in 2011 and 2013. The expected GeV and TeV gamma-ray emission is derived using different radiation models. The resulting emission is convoluted with the CTA response and tested for detection, obtaining an exclusion region for the space of parameters that rule the different flare emission models. Our simulations show different scenarios that may be favourable for achieving the detection of the flares in Crab with CTA, in different regimes of energy. In particular, we find that observations with low sub-100 GeV energy threshold telescopes could provide the most model-constraining results.


2020 ◽  
Author(s):  
Satoru Katsuda ◽  
Hitoshi Fujiwara ◽  
Yoshitaka Ishisaki ◽  
Yoshitomo Maeda ◽  
Koji Mori ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document