scholarly journals η meson physics with WASA-at-COSY

2019 ◽  
Vol 199 ◽  
pp. 01006
Author(s):  
Nils Hüsken ◽  
Kay Demmich ◽  
Alfons Khoukaz

In recent years, the η meson has been a focal point of research for the WASA experiment at the Cooler Synchrotron COSY of the Research Center Jülich. Production experiments using nucleon-nucleon and nucleon-nucleus collisions have been performed, studying the η − N interaction in various configurations. A better understanding of this interaction is a key aspect in the ongoing search for η-nuclear bound states. In addition, the η meson itself represents an ideal laboratory for precision studies of the strong and electromagnetic interactions as well as for searches for beyond Standard Model physics. Large datasets were assembled using the WASA experiment to enable studies on rare and forbidden decay modes. An overview over recent highlights of the WASA η meson physics programme was given.

2016 ◽  
Vol 12 (S324) ◽  
pp. 273-278
Author(s):  
Robert Lasenby

AbstractBosonic fields around a spinning black hole can be amplified via ‘superradiance’, a wave analogue of the Penrose process, which extracts energy and momentum from the black hole. For hypothetical ultra-light bosons, with Compton wavelengths on ≳ km scales, such a process can lead to the exponential growth of gravitationally bound states around astrophysical Kerr black holes. If such particles exist, as predicted in many theories of beyond Standard Model physics, then these bosonic clouds give rise to a number of potentially-observable signals. Among the most promising are monochromatic gravitational radiation signals which could be detected at Advanced LIGO and future gravitational wave observatories.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Michael J. Baker ◽  
Darius A. Faroughy ◽  
Sokratis Trifinopoulos

Abstract Motivated by UV explanations of the B-physics anomalies, we study a dark sector containing a Majorana dark matter candidate and a coloured coannihilation partner, connected to the Standard Model predominantly via a U1 vector leptoquark. A TeV scale U1 leptoquark, which couples mostly to third generation fermions, is the only successful single-mediator description of the B-physics anomalies. After calculating the dark matter relic surface, we focus on the most promising experimental avenue: LHC searches for the coloured coannihilation partner. We find that the coloured partner hadronizes and forms meson-like bound states leading to resonant signatures at colliders reminiscent of the quarkonia decay modes in the Standard Model. By recasting existing dilepton and monojet searches we exclude coannihilation partner masses less than 280 GeV and 400 GeV, respectively. Since other existing collider searches do not significantly probe the parameter space, we propose a new dedicated search strategy for pair production of the coloured partner decaying into bbττ final states and dark matter particles. This search is expected to probe the model up to dark matter masses around 600 GeV with current luminosity.


2021 ◽  
Vol 812 ◽  
pp. 136026
Author(s):  
Zihan Zhou ◽  
Jun Yan ◽  
Andrea Addazi ◽  
Yi-Fu Cai ◽  
Antonino Marciano ◽  
...  

2019 ◽  
Vol 64 (8) ◽  
pp. 772
Author(s):  
M. Trzebiński

Diffractive processes possible to be measured at the LHC are listed and briefly discussed. This includes soft (elastic scattering, exclusive meson pair production, diffractive bremsstrahlung) and hard (single and double Pomeron exchange jets, y +jet, W/Z, jet-gap-jet, exclusive jets) processes as well as Beyond Standard Model phenomena (anomalous gauge couplings, magnetic monopoles).


2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Vincenzo Afferrante ◽  
Axel Maas ◽  
René Sondenheimer ◽  
Pascal Törek

Strict gauge invariance requires that physical left-handed leptons are actually bound states of the elementary left-handed lepton doublet and the Higgs field within the standard model. That they nonetheless behave almost like pure elementary particles is explained by the Fr"ohlich-Morchio-Strocchi mechanism. Using lattice gauge theory, we test and confirm this mechanism for fermions. Though, due to the current inaccessibility of non-Abelian gauged Weyl fermions on the lattice, a model which contains vectorial leptons but which obeys all other relevant symmetries has been simulated.


2014 ◽  
Vol 35 ◽  
pp. 1460390
Author(s):  
SIMEONE DUSSONI

The MEG experiment started taking data in 2009 looking for the Standard Model suppressed decay μ → e + γ, which, if observed, can reveal Beyond Standard Model physics. It makes use of state-of-the art detectors optimized for operating in conditions of very high intensity, rejecting as much background as possible. The data taking ended August 2013 and an upgrade R&D is started to push the experimental sensitivity. The present upper limit on the decay Branching Ratio (BR) is presented, obtained with the subset of data from 2009 to 2011 run, together with a description of the key features of the upgraded detector.


Sign in / Sign up

Export Citation Format

Share Document