scholarly journals Test of the hadronic interaction models SIBYLL2.3, EPOS-LHC and QGSJETII- 04 with Tibet EAS core data

2019 ◽  
Vol 208 ◽  
pp. 08013
Author(s):  
M. Amenomori ◽  
X. J. Bi ◽  
D. Chen ◽  
T. L. Chen ◽  
W. Y. Chen ◽  
...  

A hybrid experiment has been started by the ASγ experiment at Yangbajing (4300m a.s.l.) in Tibet since May 2009, that consists of a high-energy air-shower-core array (YAC-I) and a high-density air-shower array (Tibet-III). In this paper, we report our results to check the hadronic interaction models SIBYLL2.3, SIBYLL2.1, EPOS-LHC and QGSJETII-04 in the multi-tens TeV energy region using YAC-I+Tibet-III experimental data from May 2009 through January 2010. The effective live time is calculated as 106.05 days. The results show that the description of transverse momentum, inelastic cross-section and inelasticity for the 4 hadronic interaction models is consistent with YAC-I experimental data within 15% systematic errors range in the forward region below 100 TeV. Among them, the EPOS-LHC model is the best hadronic interaction model. Furthermore, we find that the H4a composition model is the best one below the 100 TeV energy region.

2018 ◽  
Vol 172 ◽  
pp. 07003 ◽  
Author(s):  
J.C. Arteaga-Velázquez ◽  
D. Rivera-Rangel ◽  
W.D. Apel ◽  
K. Bekk ◽  
M. Bertaina ◽  
...  

The KASCADE-Grande observatory was a ground-based air shower array dedicated to study the energy and composition of cosmic rays in the energy interval E = 1 PeV –1 EeV. The experiment consisted of different detector systems which allowed the simultaneous measurement of distinct components of air showers (EAS), such as the muon content. In this contribution, we study the total muon number and the lateral density distribution of muons in EAS detected by KASCADE-Grande as a function of the zenith angle and the total number of charged particles. The attenuation length of the muon content of EAS is also measured. The results are compared with the predictions of the SIBYLL 2.3 high-energy hadronic interaction model.


2019 ◽  
Vol 210 ◽  
pp. 02012
Author(s):  
R. Takeishi

One of the uncertainties in ultrahigh energy cosmic ray (UHECR) observation derives from the hadronic interaction model used for air shower Monte-Carlo (MC) simulations. One may test the hadronic interaction models by comparing the measured number of muons observed at the ground from UHECR induced air showers with the MC prediction. The Telescope Array (TA) is the largest experiment in the northern hemisphere observing UHECR in Utah, USA. It aims to reveal the origin of UHECRs by studying the energy spectrum, mass composition and anisotropy of cosmic rays by utilizing an array of surface detectors (SDs) and fluorescence detectors. We studied muon densities in the UHE extensive air showers by analyzing the signal of TA SD stations for highly inclined showers. On condition that the muons contribute about 65% of the total signal, the number of particles from air showers is typically 1.88 ± 0.08 (stat.) ± 0.42 (syst.) times larger than the MC prediction with the QGSJET II-03 model for proton-induced showers. The same feature was also obtained for other hadronic interaction models, such as QGSJET II-04.


2019 ◽  
Vol 208 ◽  
pp. 11005
Author(s):  
K. Werner ◽  
B. Guiot ◽  
Iu. Karpenko ◽  
T. Pierog ◽  
G. Sophys ◽  
...  

We summarize the main features of the hadronic interaction model EPOS, which is used for cosmic ray air shower simulations but also for p-p, p-A, and A-A collisions to be compared with experimental data from LHC and RHIC.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Á. Pastor-Gutiérrez ◽  
H. Schoorlemmer ◽  
R. D. Parsons ◽  
M. Schmelling

AbstractIn the sub-TeV regime, the most widely used hadronic interaction models disagree significantly in their predictions for post-first interaction and ground-level particle spectra from cosmic ray induced air showers. These differences generate an important source of systematic uncertainty in their experimental use. We investigate the nature and impact of model uncertainties through a simultaneous analysis of ground level particles and first interaction scenarios. We focus on air shower primaries with energies close to the transition between high and low energy hadronic interaction models, where the dissimilarities have been shown to be the largest and well within the range of accelerator measurements. Interaction models are shown to diverge as several shower scenarios are compared, reflecting intrinsic differences in the model theoretical frameworks. Finally, we discuss the importance of interactions in the energy regime where the switching between models occurs ($$<1$$ < 1  TeV) and the effect of the choice of model on the number of hadronic interactions within cosmic ray induced air showers of higher energies.


2019 ◽  
Vol 208 ◽  
pp. 08003 ◽  
Author(s):  
Raul R. Prado

The hybrid design of the Pierre Auger Observatory allows for the measurement of a number of properties of extensive air showers initiated by ultra-high energy cosmic rays. By comparing these measurements to predictions from air shower simulations, it is possible to both infer the cosmic ray mass composition and test hadronic interactions beyond the energies reached by accelerators. In this paper, we will present a compilation of results of air shower measurements by the Pierre Auger Observatory which are sensitive to the properties of hadronic interactions and can be used to constrain the hadronic interaction models. The inconsistencies found between the interpretation of different observables with regard to primary composition and between their measurements and simulations show that none of the currently used hadronic interaction models can provide a proper description of air showers and, in particular, of the muon production.


2019 ◽  
Vol 208 ◽  
pp. 07001
Author(s):  
Morihiro Honda

It is well known that the correlation of atmospheric neutrinos and muons are simply correlated in the energy region of 1–10 GeV, and used for the test bench of the hadronic interaction model used for the calculation of the atmospheric neutrino flux. However, the correlation becomes unclear for neutrinos in the energy range below 1 GeV, which is important for the study of mass ordering of neutrino and CP phase of the neutrino mass. We extend the study of the correlation to the lower neutrino energies and find that the atmospheric muon flux observed at high altitude shows a good correlation to the atmospheric neutrino flux, and could be used to calibrate the hadronic interaction model.


Sign in / Sign up

Export Citation Format

Share Document