scholarly journals Event reconstruction of free-streaming data for the RICH detector in the CBM experiment

2019 ◽  
Vol 214 ◽  
pp. 01043
Author(s):  
J. Adamczewski-Musch ◽  
P. Akishin ◽  
K.–H. Becker ◽  
J. Bendarouach ◽  
C. Deveaux ◽  
...  

The Compressed Baryonic Matter (CBM) experiment is a dedicated heavy ion collision experiment at the FAIR facility. It will be one of the first HEP experiments which works in a triggerless mode: data received in the DAQ from the detectors will not be associated with events by a hardware trigger anymore. All raw data within a giventime period will be collected continuously in containers, so-called time-slices. The task of the reconstruction algorithms is to create events out of this raw data stream. In this contribution, the optimization of the reconstruction software in the RICH detector to the free-streaming data flow is presented. The implementation of ring reconstruction algorithms which use time measurements of the hits as an additional parameter is discussed.

2020 ◽  
Vol 226 ◽  
pp. 01004
Author(s):  
Volker Friese

The Compressed Baryonic Matter experiment (CBM) will investigate strongly interacting matter at high net-baryon densities by measuring nucleus-nucleus collisions at the FAIR research centre in Darmstadt, Germany. Its ambitious aim is to measure at very high interaction rates, unprecedented in the field of experimental heavy-ion physics so far. This goal will be reached with fast and radiation-hard detectors, self-triggered read-out electronics and streaming data acquisition without any hardware trigger. Collision events will be reconstructed and selected in real-time exclusively in software. This puts severe requirements to the algorithms for event reconstruction and their implementation. We will discuss some facets of our approaches to event reconstruction in the main tracking device of CBM, the Silicon Tracking System, covering local reconstruction (cluster and hit finding) as well as track finding and event definition.


Author(s):  
J. Adamczewski ◽  
K.-H. Becker ◽  
S. Belogurov ◽  
N. Boldyreva ◽  
A. Chernogorov ◽  
...  

2020 ◽  
Vol 29 (02) ◽  
pp. 2030003
Author(s):  
Anna Senger

The mission of the Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt is to explore the QCD phase diagram at high net baryon densities likely to exist in the core of neutron stars. The CBM detector system is designed to perform multi-differential measurements of hadrons and leptons in central gold-gold collisions at beam energies between 2 and 11 A GeV with unprecedented precision and statistics. In order to reduce the systematic errors of the lepton measurements, which generally suffer from a large combinatorial background, both electrons and muons will be measured with the same acceptance. Up to now, no di-muon measurements have been performed in heavy-ion collisions at beam energies below 158 A GeV. The main device for electron identification, a Ring Imaging Cherenkov (RICH) detector, can be replaced by a setup comprising hadron absorbers and tracking detectors for muon measurements. In order to obtain a complete picture of the reaction, it is important to measure simultaneously leptons and hadrons. This requirement is fulfilled for the RICH, which has a low material budget, and only little affects the trajectories of hadrons on their way to the Time-of-Flight (TOF) detector. In contrast, the simultaneous measurement of muons and hadrons within the same experimental acceptance poses a substantial challenge. This article reviews the simulated performance of the CBM experiment for muon identification, together with the possibility of simultaneous hadron measurements.


2008 ◽  
Vol 32 (4) ◽  
pp. 308-328
Author(s):  
Wang Ya-Ping ◽  
Zhou Dai-Mei ◽  
Huang Rui-Dian ◽  
Cai Xu

1982 ◽  
Vol 306 (4) ◽  
pp. 307-313 ◽  
Author(s):  
S. K. Samaddar ◽  
B. C. Samanta ◽  
D. Sperber ◽  
M. Zielińska-Pfabé

2021 ◽  
Vol 19 (2) ◽  
pp. 61-65
Author(s):  
Taghreed A. Younis ◽  
Hadi J.M. Al-Agealy

This work involves hard photon rate production from quark -gluon plasma QGP interaction in heavy ion collision. Using a quantum chromodynamic model to investigate and calculation of photons rate in 𝑐𝑔 → 𝑠𝑔𝛾 system due to strength coupling, photons rate, temperature of system, flavor number and critical. The photons rate production computed using the perturbative strength models for QGP interactions. The strength coupling was function of temperature of system, flavor number and critical temperature. Its influenced by force with temperature of system, its increased with decreased the temperature and vice versa. The strength coupling has used to examine the confinement and deconfinement of quarks in QGP properties and influence on the photon rate production. In our approach, we calculate the photons rate depending on the strength coupling, photons rate and temperature of system with other factors. The results plotted as a function of the photons energy. The photons rate was decreased with increased temperature and increased with decreased with strength coupling.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guruprasad Kadam ◽  
Swapnali Pawar

We study the equation of state (EoS) of hot and dense hadron gas by incorporating the excluded volume corrections into the ideal hadron resonance gas (HRG) model. The total hadron mass spectrum of the model is the sum of the discrete mass spectrum consisting of all the experimentally known hadrons and the exponentially rising continuous Hagedorn states. We confront the EoS of the model with lattice quantum chromodynamics (LQCD) results at finite baryon chemical potential. We find that this modified HRG model reproduces the LQCD results up to T=160 MeV at zero as well as finite baryon chemical potential. We further estimate the shear viscosity within the ambit of this model in the context of heavy-ion collision experiments.


Sign in / Sign up

Export Citation Format

Share Document