scholarly journals The design and Performance of the Atlas Inner Detector Trigger in High Pileup Collisions at 13 Tev at the Large Hadron Collider

2019 ◽  
Vol 214 ◽  
pp. 01051
Author(s):  
Julie Kirk

The design and performance of the ATLAS Inner Detector (ID) trigger algorithms running online on the High Level Trigger (HLT) processor farm for 13 TeV LHC collision data with high pileup are discussed. The HLT ID tracking is a vital component in all physics signatures in the ATLAS trigger for the precise selection of the rare or interesting events necessary for physics analysis without overwhelming the offline data storage in terms of both size and rate. To cope with the high interaction rates expected in the 13 TeV LHC collisions, the ID trigger was redesigned during the 2013-15 long shutdown. The performance of the ID trigger in Run 2 data from 13 TeV LHC collisions has been excellent and exceeded expectations, even at the very high interaction multiplicities observed at the end of data-taking in 2017. The detailed efficiencies and resolutions of the ID trigger in a wide range of physics signatures are presented for the Run 2 data. The superb performance of the ID trigger algorithms in these extreme pileup conditions demonstrates how the ID tracking continues to lie at the heart of the trigger performance to enable the ATLAS physics program, and will continue to do so in the future.

2019 ◽  
Vol 214 ◽  
pp. 01035
Author(s):  
Matthias Richter ◽  
Mikolaj Krzewicki ◽  
Giulio Eulisse

The ALICE experiment at the Large Hadron Collider (LHC) at CERN is planned to be operated in a continuous data-taking mode in Run 3. This will allow to inspect data from all Pb-Pb collisions at a rate of 50 kHz, giving access to rare physics signals embedded in a large background. Based on experience with real-time reconstruction of particle trajectories and event properties in the ALICE High Level Trigger, the ALICE O2 facility is currently designed and developed to support processing of a continuous, triggerless stream of data segmented into entities referred to as timeframes. Both raw data input into the ALICE O2 system and the actual processing of aggregated timeframes are distributed among multiple processes on a manynode cluster. Process communication is based on the asynchronous message passing paradigm. This paper presents the basic concept for identification of data in the distributed system together with prototype implementations and performance measurements.


2020 ◽  
Vol 245 ◽  
pp. 07044
Author(s):  
Frank Berghaus ◽  
Franco Brasolin ◽  
Alessandro Di Girolamo ◽  
Marcus Ebert ◽  
Colin Roy Leavett-Brown ◽  
...  

The Simulation at Point1 (Sim@P1) project was built in 2013 to take advantage of the ATLAS Trigger and Data Acquisition High Level Trigger (HLT) farm. The HLT farm provides around 100,000 cores, which are critical to ATLAS during data taking. When ATLAS is not recording data, such as the long shutdowns of the LHC, this large compute resource is used to generate and process simulation data for the experiment. At the beginning of the second long shutdown of the large hadron collider, the HLT farm including the Sim@P1 infrastructure was upgraded. Previous papers emphasised the need for simple, reliable, and efficient tools and assessed various options to quickly switch between data acquisition operation and offline processing. In this contribution, we describe the new mechanisms put in place for the opportunistic exploitation of the HLT farm for offline processing and give the results from the first months of operation.


HortScience ◽  
2018 ◽  
Vol 53 (8) ◽  
pp. 1095-1101
Author(s):  
Li-Qiang Tan ◽  
Xin-Yu Wang ◽  
Hui Li ◽  
Guan-Qun Liu ◽  
Yao Zou ◽  
...  

Landrace tea populations are important recourses for germplasm conservation and selection of elite tea clone cultivars. To understand their genetic diversity and use them effectively for breeding, two traditional landrace tea populations, Beichuan Taizicha (BCTZ) and Nanjiang Dayecha (NJDY), localized to northern Sichuan, were evaluated for morphological characters, simple sequence repeat (SSR)–based DNA markers and the contents of biochemical components. A wide range of morphological variation and a moderately high level of DNA polymorphism were observed from both BCTZ and NJDY. NJDY had on average, bigger leaves, larger flowers, higher total catechins (TCs), and greater gene diversity (GD) than BCTZ. Interestingly, samples from BCTZ had a wide range in the ratio of galloylated catechins to nongalloylated catechins (G/NG) (1.83–8.12, cv = 48.8%), whereas samples from NJDY were more variable in total amino acid (TAA) content (25.3–50.8 mg·g−1 dry weight) than those from BCTZ. We concluded that the two Camellia sinensis landrace populations are of great interest for both individual selection breeding and scientific studies.


2019 ◽  
Vol 214 ◽  
pp. 07017
Author(s):  
Jean-Marc Andre ◽  
Ulf Behrens ◽  
James Branson ◽  
Philipp Brummer ◽  
Olivier Chaze ◽  
...  

The primary goal of the online cluster of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) is to build event data from the detector and to select interesting collisions in the High Level Trigger (HLT) farm for offline storage. With more than 1500 nodes and a capacity of about 850 kHEPSpecInt06, the HLT machines represent similar computing capacity of all the CMS Tier1 Grid sites together. Moreover, it is currently connected to the CERN IT datacenter via a dedicated 160 Gbps network connection and hence can access the remote EOS based storage with a high bandwidth. In the last few years, a cloud overlay based on OpenStack has been commissioned to use these resources for the WLCG when they are not needed for data taking. This online cloud facility was designed for parasitic use of the HLT, which must never interfere with its primary function as part of the DAQ system. It also allows to abstract from the different types of machines and their underlying segmented networks. During the LHC technical stop periods, the HLT cloud is set to its static mode of operation where it acts like other grid facilities. The online cloud was also extended to make dynamic use of resources during periods between LHC fills. These periods are a-priori unscheduled and of undetermined length, typically of several hours, once or more a day. For that, it dynamically follows LHC beam states and hibernates Virtual Machines (VM) accordingly. Finally, this work presents the design and implementation of a mechanism to dynamically ramp up VMs when the DAQ load on the HLT reduces towards the end of the fill.


2020 ◽  
pp. 1-23
Author(s):  
Gyu-Jin Hwang

This article aims to identify how the economies that do not necessarily prioritise social rights in their social policy arrangements fare in achieving various healthcare objectives. The big five of East Asian countries – China, Japan, South Korea, Taiwan, Singapore plus Hong Kong – are considered as such cases. It first highlights a wide range of variations in their healthcare offerings. It then shows that, contrary to the common belief, they constitute a surprisingly high level of redistributive elements in them. Deviating from their overall welfare regime characteristics, each healthcare system presents a unique combination of policy objectives in social, medical, economic and political terms, raising a question of the utility of social rights as a central conceptual lens to understand the world of welfare capitalism.


2020 ◽  
Vol 245 ◽  
pp. 05004
Author(s):  
Rosen Matev ◽  
Niklas Nolte ◽  
Alex Pearce

For Run 3 of the Large Hadron Collider, the final stage of the LHCb experiment’s high-level trigger must process 100 GB/s of input data. This corresponds to an input rate of 1 MHz, and is an order of magnitude larger compared to Run 2. The trigger is responsible for selecting all physics signals that form part of the experiment’s broad research programme, and as such defines thousands of analysis-specific selections that together comprise tens of thousands of algorithm instances. The configuration of such a system needs to be extremely flexible to be able to handle the large number of different studies it must accommodate. However, it must also be robust and easy to understand, allowing analysts to implement and understand their own selections without the possibility of error. A Python-based system for configuring the data and control flow of the Gaudi-based trigger application is presented. It is designed to be user-friendly by using functions for modularity and removing indirection layers employed previously in Run 2. Robustness is achieved by reducing global state and instead building the data flow graph in a functional manner, whilst keeping configurability of the full call stack.


2021 ◽  
Author(s):  
Markus Tobias Prim ◽  
N. Braun ◽  
Y. Guan ◽  
O. Hartbrich ◽  
R. Itoh ◽  
...  

2021 ◽  
Vol 27 (1) ◽  
pp. 60-64
Author(s):  
Álvaro Huerta Ojeda ◽  
Daniel Jerez-Mayorga ◽  
Sergio Galdames Maliqueo ◽  
Darío Martínez García ◽  
Ángela Rodríguez-Perea ◽  
...  

ABSTRACT Introduction The squat is an exercise that is widely used for the development of strength in sports. However, considering that not all sports gestures are vertical, it is important to investigate the effectiveness of propulsive force stimuli applied in different planes. Objective The main purpose of this study was to determine the influence of maximum isometric force (MIF) exerted on starting blocks over performance in 5, 10 and 20-meter sprints. Methods Seven high-level male sprinters (mean age ± SD = 28 ± 5.77 years) participated in this study. The variables were: a) MIF in squats and on starting blocks (measured using a functional electromechanical dynamometer [FEMD]), b) time in 5, 10 and 20-m sprints and c) jump height (measured by the squat jump test). For data analysis, a Pearson correlation was performed between the different variables. The criteria for interpreting the strength of the r coefficients were as follows: trivial (<0.1), small (0.1−0.3), moderate (0.3−0.5), high (0.5−0.7), very high (0.7−0.9), or practically perfect (>0.9). The level of significance was p < 0.05. Results There was very high correlation between MIF exerted on starting blocks and performance in the first meters of the sprint (5-m: r = -0.84, p = 0.01). However, there was small correlation between MIF in squats and performance in the first meters of the sprint (5-m: r = -0.22, p < 0.62). Conclusion The MIF applied on starting blocks correlates very high with time in the first meters of the sprint in high-level athletes. In addition, the use of the FEMD provides a wide range of possibilities for evaluation and development of strength with a controlled natural movement. Level of evidence IV; Prognostic Studies - Case series.


Author(s):  
Isabel Schwerdtfeger

This chapter discusses the challenges high-end storage solutions will have with future demands. Due to heavy end-user demands for real-time processing of data access, this need must be addressed by high-end storage solutions. But what type of high-end storage solutions address this need and are suitable to ensure high performance write and retrieval of data in real-time from high- end storage infrastructures, including read and write access from digital archives? For this reason, this chapter reviews a few disk and tape solutions as well as combined disk- and tape storage solutions. The review on the different storage solutions does not focus on compliance of data storage management, but on available commercial high-end systems, addressing scalability and performance requirements both for online storage and archives. High level requirements aid in identifying high-end storage system features and support Extreme Scale infrastructures for the amount of data that high-end storage systems will need to manage in future.


Sign in / Sign up

Export Citation Format

Share Document