scholarly journals Preparation and characterization of 10B targets at JRC-Geel

2020 ◽  
Vol 229 ◽  
pp. 03005
Author(s):  
David Vanleeuw ◽  
Jan Heyse ◽  
Goedele Sibbens ◽  
Mariavittoria Zampella

Measurements of neutron-induced cross sections to generate nuclear data are a core activity of the JRC-Directorate G Standards for Nuclear Safety, Security and Safeguards unit in Geel. Thin 10B layers are of great importance in this activity as they are used to measure the absolute neutron flux in the beam using the standard 10B(n,α)7Li reaction cross-section as a reference. After a period of reduced activity and in line with a renewed interest for nuclear data, the demand for high quality 10B targets increased. In this paper we describe the design and features of a new e-beam evaporator specifically customized for the preparation of boron targets as replacement of the old dysfunctional equipment. Several 10B targets of varying thicknesses were prepared and characterized as part of the factory acceptance tests and implementation in the JRC-Geel target preparation laboratory. Differential substitution weighing was applied for mass determination and in order to calibrate the thickness monitor. Comparative time-of-flight measurements relative to 10B and 235U standard targets were conducted at the GELINA neutron time-of-flight facility at the JRC-Geel site as second methodology for the determination of 10B areal density. The morphology of the layers was assessed by means of Scanning Electron Microscopy (SEM). The determination of impurities was realized by means of Energy Dispersive X-ray (EDX). Finally, two boron targets were prepared in the frame of the measurement of the neutron induced fission cross-section of 230Th at the n_TOF neutron time-of-flight facility at CERN.

2020 ◽  
Vol 239 ◽  
pp. 12002
Author(s):  
Esther Leal-Cidoncha ◽  
Gilles Noguere ◽  
Olivier Bouland ◽  
Olivier Serot

Fission cross section of 239Pu can be seen as a sum of the “immediate" fission and “two-step" (n,γf) reactions. In the Resolved Resonance Range of the reaction cross sections, the contribution of the (n,γf) process has an impact on the determination of the partial widths magnitude involved in the Reich-Moore approximation of the R-matrix theory. The present work aims to investigate this impact by using the CONRAD code and the partial width Γγf for the (n,γf) reaction calculated by Lynn et al. [1]. A special attention will be paid to the covariance matrix obtained on νp.


2019 ◽  
Vol 23 ◽  
pp. 47
Author(s):  
A. Kalamara ◽  
M. Serris ◽  
A. Spiliotis ◽  
D. Sigalos ◽  
N. Patronis ◽  
...  

Cross sections of the 174Hf(n,2n)173Hf and 176Hf(n,2n)175Hf reactions have been experimentally determined relative to the 27Al(n,α)24Na reference reaction at incident neutron energies of 15.3 and 17.1 MeV by means of the activation technique. The irradiations were carried out at the 5 MV tandem T11/25 Accelerator Laboratory of NCSR "Demokritos" with monoenergetic neutron beams provided via the 3H(d,n)4He reaction, using a new Ti-tritiated target of 373 GBq activity. In the determination of the 176Hf(n,2n)175Hf reaction cross section the contamination of the 174Hf(n,γ)175Hf and 177Hf(n,3n)175Hf reactions has been taken into account. Moreover, the neutron beam energy has been studied by means of Monte Carlo simulation codes and the neutron flux has been determined via the 27Al(n,α)24Na reference reaction.


2018 ◽  
Vol 169 ◽  
pp. 00009
Author(s):  
Toni Kögler ◽  
Roland Beyer ◽  
Arnd R. Junghans ◽  
Ronald Schwengner ◽  
Andreas Wagner

The fast-neutron-induced fission cross section of 242Pu was determined in the energy range of 0.5 MeV to 10MeV at the neutron time-of-flight facility nELBE. Using a parallel-plate fission ionization chamber this quantity was measured relative to 235U(n,f). The number of target nuclei was thereby calculated by means of measuring the spontaneous fission rate of 242Pu. An MCNP 6 neutron transport simulation was used to correct the relative cross section for neutron scattering. The determined results are in good agreement with current experimental and evaluated data sets.


1968 ◽  
Vol 23 (12) ◽  
pp. 2080-2083 ◽  
Author(s):  
D. Hyatt ◽  
K. Lacmann

A Bendix time of flight mass spectrometer has been modified to enable the determination of some ion-molecule reaction cross sections in the energy range 1 — 100 eV.In the reactions studiedX+ + D2 → XD++Dwhere X may be Ar, N2 or CO, the results obtained agree with the predictions of the polarization theory in the range below 10 eV despite the fact that no intermediate complex is formed at these energies. Between about 10—50 eV where spectator stripping occurs the cross section follows an approximate E-l dependence. Above these energies the results are consistent with a transition to a region in which knock-on processes predominate and where an impulse approximation treatment would be valid.


2020 ◽  
Vol 239 ◽  
pp. 17007
Author(s):  
F. Gunsing ◽  
F. Belloni ◽  
E. Berthoumieux ◽  
M. Diakaki ◽  
E. Dupont ◽  
...  

MicroMegas detectors are versatile gaseous detectors which are used for ionizing particle detection. A MicroMegas detector consists of two adjacent gas-filled volumes. One volume acts as a drift region with an electric field operating in the ionization chamber regime, the second volume is the amplification region acting as a parallel-plate avalanche counter. The use of the microbulk technique allows the production of thin, radiation resistant, and low-mass detector with a highly variable gain. Such MicroMegas detectors have been developed and used in combination with neutron time-of-flight measurements for in-beam neutron-flux monitoring, fission and light-charged particle reaction cross section measurements, and for neutron-beam imaging. An overview of MicroMegas detectors for neutron detection and neutron reaction cross section measurements and related results and developments will be presented.


2020 ◽  
Vol 29 (08) ◽  
pp. 2050052
Author(s):  
Dashty T. Akrawy ◽  
Ali H. Ahmed ◽  
E. Tel ◽  
A. Aydin ◽  
L. Sihver

An empirical formula to calculate the ([Formula: see text], [Formula: see text] reaction cross-sections for 14.5[Formula: see text]MeV neutrons for 183 target nuclei in the range [Formula: see text] is presented. Evaluated cross-section data from TENDL nuclear data library were used to test and benchmark the formula. In this new formula, the nonelastic cross-section term is replaced by the atomic number [Formula: see text], while the asymmetry parameter-dependent exponential term has been retained. The calculated results are presented in comparison with the seven previously published formulae. We show that the new formula is significantly in better agreement with the measured values compared to previously published formulae.


1993 ◽  
Vol 08 (25) ◽  
pp. 2343-2350 ◽  
Author(s):  
N. N. ACHASOV ◽  
G. N. SHESTAKOV

In this letter, the necessity of a more precise estimation of the data on the reaction π-p → f2(1270)n → π0π0n is mentioned. The total cross-section σ(π-p → f2(1270)n) obtained from the data on the reaction π-p → π0π0n is shown to be approximately three times smaller than that following from the π-p → π+π-n data and also four times smaller than the prediction of the one-pion-exchange model. It is very important to resolve this disagreement because the results on the reaction π-p → f2(1270)n → π0π0n are used directly for the normalization of other reaction cross-sections and determination of branching ratios for some resonances.


2019 ◽  
Vol 99 (2) ◽  
Author(s):  
T. Kögler ◽  
A. R. Junghans ◽  
R. Beyer ◽  
M. Dietz ◽  
Ch. E. Düllmann ◽  
...  

2015 ◽  
Vol 66 (3) ◽  
pp. 478-485 ◽  
Author(s):  
Jae Cheon Kim ◽  
Gi Dong Kim ◽  
Jae Bum Son ◽  
Cheol Woo Lee ◽  
Young-Ouk Lee

Sign in / Sign up

Export Citation Format

Share Document