scholarly journals Short-Pulse Laser-Driven Moderated Neutron Source

2020 ◽  
Vol 231 ◽  
pp. 01008
Author(s):  
Sven C. Vogel ◽  
Juan C. Fernandez ◽  
D. Cort Gautier ◽  
Nikodem Mitura ◽  
Markus Roth ◽  
...  

Neutron production with laser-driven neutron sources was demonstrated. We outline the basics of laser-driven neutron sources, highlight some fundamental advantages, and quantitatively compare the neutron production at the TRIDENT laser sources with the well-established LANSCE pulsed neutron spallation source. Ongoing efforts by our team to continue development of these sources, in particular the LANSCE-ina-box instrument, are described. The promise of ultra-intense lasers as drivers for brilliant, compact, and highly efficient particle accelerators portends driving next-generation neutron sources, potentially replacing in some cases much larger conventional accelerators.

2020 ◽  
Vol 6 (12) ◽  
pp. 136
Author(s):  
Ralf F. Ziesche ◽  
Anton S. Tremsin ◽  
Chun Huang ◽  
Chun Tan ◽  
Patrick S. Grant ◽  
...  

Bragg edge tomography was carried out on novel, ultra-thick, directional ice templated graphite electrodes for Li-ion battery cells to visualise the distribution of graphite and stable lithiation phases, namely LiC12 and LiC6. The four-dimensional Bragg edge, wavelength-resolved neutron tomography technique allowed the investigation of the crystallographic lithiation states and comparison with the electrode state of charge. The tomographic imaging technique provided insight into the crystallographic changes during de-/lithiation over the electrode thickness by mapping the attenuation curves and Bragg edge parameters with a spatial resolution of approximately 300 µm. This feasibility study was performed on the IMAT beamline at the ISIS pulsed neutron spallation source, UK, and was the first time the 4D Bragg edge tomography method was applied to Li-ion battery electrodes. The utility of the technique was further enhanced by correlation with corresponding X-ray tomography data obtained at the Diamond Light Source, UK.


1979 ◽  
Vol 165 (2) ◽  
pp. 139-155 ◽  
Author(s):  
T.W. Dombeck ◽  
J.W. Lynn ◽  
S.A. Werner ◽  
T. Brun ◽  
J. Carpenter ◽  
...  

2009 ◽  
Vol 56 (5) ◽  
pp. 2931-2937 ◽  
Author(s):  
Anton S. Tremsin ◽  
Jason B. McPhate ◽  
Winfried A. Kockelmann ◽  
John V. Vallerga ◽  
Oswald H. W. Siegmund ◽  
...  

Neutron transmission radiography can be strongly enhanced by adding spectroscopic data spatially correlated with the attenuation coefficient. This can now be achieved at pulsed neutron sources, utilizing a neutron detector with high spatial and temporal resolution. The energy of transmitted neutrons can be recovered from their time-of-flight, simultaneously with the acquisition of the transmission radiographic image by a pixelated detector. From this, the positions of Bragg edges can be obtained for each pixel of the radiographic image. The combination of both spectroscopic and transmission information enables high spatial resolution studies to be carried out on material composition, phase transitions, texture variations, as well as strain analysis, as long as the resolution and statistics are favorable. This paper presents initial results from proof-of-principle experiments on energy-resolved neutron transmission radiography, using a neutron counting detector consisting of neutron-sensitive microchannel plates (MCPs) and a Medipix2 electronic readout. These experiments demonstrate that the position of Bragg edges are measurable with a few mAring resolution in each 55-mum pixel of the detector, corresponding to DeltaE/E~0.1%. However, the limited intensity of most current neutron sources requires a compromise between the energy resolution and the area over which it was integrated. Still, the latter limitation can be overcome by combining energy information for several neighboring pixels, while transmission radiography can still be done at the limit of the detector spatial resolution.


Sign in / Sign up

Export Citation Format

Share Document