scholarly journals Saharan Dust Events Over the Northern Mediterranean: 4 Years of Measurements Over 4 Earlinet Stations

2020 ◽  
Vol 237 ◽  
pp. 05010
Author(s):  
Ourania Soupiona ◽  
Alex Papayannis ◽  
Maria Mylonaki ◽  
Nikolaos Papagiannopoulos ◽  
Pablo Ortiz-Amezcua ◽  
...  

Four years (2014-2017) of observations of depolarization Raman Lidar systems of four EARLINET (European Aerosol research Lidar Network) stations [from West to East: Granada (Spain), Potenza (Italy), Athens (Greece) and Limassol (Cyprus)] were collected and used to a statistical analysis of Saharan dust events over Mediterranean basin. In this study, emphasis is given to the consistency of the particle linear depolarization ratio (δp532), the extinction-to-backscatter ratio mentioned as Lidar Ratio (LR532) and the Aerosol Optical Thickness (AOT532) within the observed Saharan dust layers, corresponding to the visible range (532 nm). Geometrical properties and clusters of aerosol mixtures are also presented. Our clustering was based on previous classification by airborne High Spectral Resolution Lidar (HSRL) observations and was further supported by backward trajectory analysis. We found mean δp532 values of 0.24±0.05, 0.26±0.06, 0.28±0.05 and 0.28±0.04, mean LR532 values of 52±8 sr, 51±9 sr, 52±9 sr and 49±6 sr, mean AOT532 values of 0.40±0.31, 0.11±0.07, 0.12±0.10 and 0.32±0.17 and mean layer thicknesses of 3392±1458 m, 2150±1082 m, 1872±816 m and 1716±567 m for Granada, Potenza, Athens and Limassol respectively. This work could assist in bridging the existing gaps related to the extensive and intensive dust aerosol properties over the Mediterranean and enriching the bibliography about mixed aerosol layers from different sources (e.g. dust and biomass burning (BB) aerosols, dust and urban/ industrial aerosols).

2015 ◽  
Vol 15 (23) ◽  
pp. 13453-13473 ◽  
Author(s):  
S. P. Burton ◽  
J. W. Hair ◽  
M. Kahnert ◽  
R. A. Ferrare ◽  
C. A. Hostetler ◽  
...  

Abstract. Linear particle depolarization ratio is presented for three case studies from the NASA Langley airborne High Spectral Resolution Lidar-2 HSRL-2). Particle depolarization ratio from lidar is an indicator of non-spherical particles and is sensitive to the fraction of non-spherical particles and their size. The HSRL-2 instrument measures depolarization at three wavelengths: 355, 532, and 1064 nm. The three measurement cases presented here include two cases of dust-dominated aerosol and one case of smoke aerosol. These cases have partial analogs in earlier HSRL-1 depolarization measurements at 532 and 1064 nm and in literature, but the availability of three wavelengths gives additional insight into different scenarios for non-spherical particles in the atmosphere. A case of transported Saharan dust has a spectral dependence with a peak of 0.30 at 532 nm with smaller particle depolarization ratios of 0.27 and 0.25 at 1064 and 355 nm, respectively. A case of aerosol containing locally generated wind-blown North American dust has a maximum of 0.38 at 1064 nm, decreasing to 0.37 and 0.24 at 532 and 355 nm, respectively. The cause of the maximum at 1064 nm is inferred to be very large particles that have not settled out of the dust layer. The smoke layer has the opposite spectral dependence, with the peak of 0.24 at 355 nm, decreasing to 0.09 and 0.02 at 532 and 1064 nm, respectively. The depolarization in the smoke case may be explained by the presence of coated soot aggregates. We note that in these specific case studies, the linear particle depolarization ratio for smoke and dust-dominated aerosol are more similar at 355 nm than at 532 nm, having possible implications for using the particle depolarization ratio at a single wavelength for aerosol typing.


2020 ◽  
Vol 237 ◽  
pp. 02022
Author(s):  
Igor Veselovskii ◽  
Philippe Goloub ◽  
Qiaoyun Hu ◽  
Thierry Podvin ◽  
Michail Korenskiy

The lidar ratios of Saharan dust at 355 and 532 nm (LR355 and LR532) measured over West Africa during SHADOW field campaign are analyzed. Results demonstrate that even for pure dust, the lidar ratio may present strong height dependence. The possible reasons of height dependence of lidar ratios during strong dust events are considered.


2020 ◽  
Author(s):  
Qiaoyun Hu ◽  
Haofei Wang ◽  
Philippe Goloub ◽  
Zhengqiang Li ◽  
Igor Veselovskii ◽  
...  

Abstract. The Taklamakan desert is an important dust source for the global atmospheric dust budget and a cause of the dust weather in Eastern Asia. The characterization of the properties and vertical distributions of Taklamakan dust in the source region is still very limited. To fill this gap, the DAO (Dust Aerosol Observation) was conducted in Kashi, China in 2019. Kashi site is about 150 km to the west rim of the Taklamakan desert and is strongly impacted by desert dust aerosols, especially in spring time, i.e. April and May. Apart from dust, fine particles coming from local anthropogenic emissions or/and transported aerosols are also a non-negligible aerosol component. In this study, we provide the first profiling of the 2α + 3β + 3δ lidar profiles of Taklamakan dust based on a multi-wavelength Raman polarization lidar. Four cases, including two Taklamakan dust events (Case 1 and 2) and two polluted dust events (Case 3 and 4) are presented. The lidar ratio in the Taklamakan dust outbreak is found to be 51 ± 8–56 ± 8 sr at 355 nm and 45 ± 7 sr at 532 nm. The particle linear depolarization ratios are about 0.28 ± 0.04–0.32 ± 0.05 at 355 nm, 0.35 ± 0.05 at 532 nm and 0.31 ± 0.05 at 1064 nm. The observed polluted dust is commonly featured with reduced particle linear depolarization ratio and enhanced extinction and backscatter Angstrom exponent. In Case 3, the lidar ratio of polluted dust is about 42 ± 6 sr at 355 nm and 40 ± 6 sr at 532 nm. The particles linear depolarization ratios decrease to about 0.25, with a weak spectral dependence. In Case 4, the variability of lidar ratio and particle linear depolarization ratio is higher than in Case 3, which reflects the complexity of the nature of mixed pollutant and the mixing state. The results provide the first reference for the characteristics of Taklamakan dust measured by Raman lidar. The data could contribute to complementing the dust model and improving the accuracy of climate modeling.


2021 ◽  
Vol 14 (12) ◽  
pp. 7851-7871 ◽  
Author(s):  
Thomas Flament ◽  
Dimitri Trapon ◽  
Adrien Lacour ◽  
Alain Dabas ◽  
Frithjof Ehlers ◽  
...  

Abstract. Aeolus carries the Atmospheric LAser Doppler INstrument (ALADIN), the first high-spectral-resolution lidar (HSRL) in space. Although ALADIN is optimized to measure winds, its two measurement channels can also be used to derive optical properties of atmospheric particles, including a direct retrieval of the lidar ratio. This paper presents the standard correct algorithm and the Mie correct algorithm, the two main algorithms of the optical properties product called the Level-2A product, as they are implemented in version 3.12 of the processor, corresponding to the data labelled Baseline 12. The theoretical basis is the same as in Flamant et al. (2008). Here, we also show the in-orbit performance of these algorithms. We also explain the adaptation of the calibration method, which is needed to cope with unforeseen variations of the instrument radiometric performance due to the in-orbit strain of the primary mirror under varying thermal conditions. Then we discuss the limitations of the algorithms and future improvements. We demonstrate that the L2A product provides valuable information about airborne particles; in particular, we demonstrate the capacity to retrieve a useful lidar ratio from Aeolus observations. This is illustrated using Saharan dust aerosol observed in June 2020.


2012 ◽  
Vol 12 (10) ◽  
pp. 26843-26869
Author(s):  
S. Groß ◽  
M. Esselborn ◽  
F. Abicht ◽  
M. Wirth ◽  
A. Fix ◽  
...  

Abstract. Airborne high spectral resolution lidar observations over Europe during the EUCAARI field experiment in May 2008 are analysed with respect to spatial distribution and optical properties of continental pollution aerosol. Continental aerosol is characterized by its depolarisation and lidar ratio. Mean values of 6%±1% for the particle linear depolarisation ratio, and 56 sr±6 sr for the lidar ratio were found for pollution aerosol. Both, lidar ratio and depolarisation ratio at 532 nm show virtually no variations for all analysed days during the measurement campaign.


2013 ◽  
Vol 13 (5) ◽  
pp. 2435-2444 ◽  
Author(s):  
S. Groß ◽  
M. Esselborn ◽  
F. Abicht ◽  
M. Wirth ◽  
A. Fix ◽  
...  

Abstract. Airborne high spectral resolution lidar observations over Europe during the EUCAARI-LONGREX field experiment in May 2008 are analysed with respect to the optical properties of continental pollution aerosol. Continental pollution aerosol is characterized by its depolarisation and lidar ratio. Over all, the measurements of the lidar ratio and the particle linear depolarization ratio of pollution aerosols provide a narrow range of values. Therefore, this data set allows for a distinct characterization of the aerosol type "pollution aerosol" and thus is valuable both to distinguish continental pollution aerosol from other aerosol types and to determine mixtures with other types of aerosols.


2011 ◽  
Vol 11 (4) ◽  
pp. 12763-12803 ◽  
Author(s):  
L. Mona ◽  
A. Amodeo ◽  
G. D'Amico ◽  
A. Giunta ◽  
F. Madonna ◽  
...  

Abstract. Multi-wavelength Raman lidar measurements were performed at CNR-IMAA Atmospheric Observatory (CIAO) during the entire Eyjafjallajökull explosive eruptive period in April–May 2010, whenever weather conditions permitted. A methodology for volcanic layer identification and accurate aerosol typing has been developed on the basis both of the multi-wavelength Raman lidar measurements and EARLINET measurements performed at CIAO since 2000. The aerosol mask for lidar measurements performed at CIAO during the 2010 Eyjafjallajökull eruption has been obtained. Volcanic aerosol layers have been observed in different periods: 19–22 April, 27–29 April, 8–9 May, 13–14 May and 18–19 May. A maximum aerosol optical depth of about 0.12–0.13 was observed on 20 April, 22:00 UTC and 13 May, 20:30 UTC. Volcanic particles have been detected both at low altitudes, in the free troposphere and in the upper troposphere. Intrusions into the PBL have been revealed on 21–22 April and 13 May. In the April–May period Saharan dust intrusions typically occur in Southern Italy. For the period under investigations, a Saharan dust intrusion was observed on 13–14 May: dust and volcanic particles have been simultaneously observed at CIAO both at separated different levels and mixed within the same layer. Lidar ratios at 355 and 532 nm, Ångström exponent at 355/532 nm, backscatter related Ångström exponent at 532/1064 nm and particle linear depolarization ratio at 532 nm measured inside the detected volcanic layers have been discussed. The dependence of these quantities on relative humidity (RH) has been investigated by using co-located microwave profiler measurements. The particle linear depolarization ratio increasing with RH, lidar ratio values at 355 nm around 80 sr, and values of the ratio of lidar ratios greater than 1 suggest the presence of sulfates mixed with continental aerosol. Lower lidar ratio values (around 40 sr) increasing with RH and values of the ratio of lidar ratios lower than 1 indicate the presence of some aged ash inside these sulfate layers.


2020 ◽  
Author(s):  
Ourania Soupiona ◽  
Alexandros Papayannis ◽  
Panagiotis Kokkalis ◽  
Romanos Foskinis ◽  
Guadalupe Sánchez Hernández ◽  
...  

Abstract. Remote sensing measurements of aerosols using depolarization Raman Lidar systems from 4 EARLINET (European Aerosol research Lidar Network) stations are used for a comprehensive analysis of Saharan dust events over the Mediterranean basin in the period 2014–2017. In this period, we selected to study 51 dust events regarding the geometrical, optical and microphysical properties of dust particles, classifying them and assessing their radiative forcing effect on the atmosphere. From West to East, the stations of Granada, Potenza, Athens and Limassol were selected as representative Mediterranean cities regularly affected by Saharan dust intrusions. Emphasis was given on lidar measurements in the visible (532 nm) and specifically on the consistency of the particle linear depolarization ratio (δp532), the extinction-to-backscatter lidar ratio (LR532) and the Aerosol Optical Thickness (AOT532) within the observed dust layers. We found mean δp532 values of 0.24 ± 0.05, 0.26 ± 0.06, 0.28 ± 0.05 and 0.28 ± 0.04, mean LR532 values of 52 ± 8 sr, 51 ± 9 sr, 52 ± 9 sr and 49 ± 6 sr, and mean AOT532 values of 0.40 ± 0.31, 0.11 ± 0.07, 0.12 ± 0.10 and 0.32 ± 0.17, for Granada, Potenza, Athens and Limassol, respectively. The mean layer thickness values were found to range from ~1700 to ~3400 m. Additionally, based also on a previous aerosol type classification scheme provided by airborne High Spectral Resolution Lidar (HSRL) observations and on air mass backward trajectory analysis, a clustering analysis was performed in order to identify the major mixing aerosol types over the studied area. Furthermore, a synergy of lidar measurements and modeling was used to deeply analyze the solar and thermal radiative forcing of airborne dust. In total, a cooling behavior in the solar range and a significantly lower heating behavior in the thermal range was estimated. Depending on the dust optical and geometrical properties, the load intensity and the solar zenith angle (SZA), the estimated solar radiative forcing values range from −59 to −22 W m−2 at the surface and from −24 to −1 W m−2 at the top of the atmosphere (TOA). Similarly, in the thermal spectral range these values range from +2 to +4 W m−2 for the surface and from +1 to +3 W m−2 for the TOA. Finally, the radiative forcing seems to be inversely proportional to the dust mixing ratio, since higher absolute values are estimated for less mixed dust layers.


2015 ◽  
Vol 15 (13) ◽  
pp. 19325-19366 ◽  
Author(s):  
S. Groß ◽  
V. Freudenthaler ◽  
K. Schepanski ◽  
C. Toledano ◽  
A. Schäfler ◽  
...  

Abstract. Dual-wavelength Raman and depolarization lidar observations were performed during the SALTRACE campaign at Barbados in June and July 2013 to characterize the optical properties and vertical distribution of long-range transported Saharan dust at the end of its way across the Atlantic Ocean. Four major dust events were studied during the measurements from 15 June to 13 July 2013 with aerosol optical depths of up to 0.6. The vertical aerosol distribution was characterized by a three-layer structure consisting of the boundary layer, the entrainment or mixing layer, and the pure Saharan dust layer. The upper boundary of the pure dust layer reached up to 4.5 km height. The contribution of the pure dust layer was about half of the total AOD. The total dust contribution was about 50–70 % of the total AOD. The lidar ratio within the pure dust layer was found to be wavelength independent with mean values of 53 ± 5 sr at 355 nm and 56 ± 7 sr at 532 nm. For the particle linear depolarization ratio wavelength independent mean values of 0.26 ± 0.03 at 355 nm and 0.27 ± 0.01 at 532 nm have been found.


2020 ◽  
Vol 20 (23) ◽  
pp. 15147-15166
Author(s):  
Ourania Soupiona ◽  
Alexandros Papayannis ◽  
Panagiotis Kokkalis ◽  
Romanos Foskinis ◽  
Guadalupe Sánchez Hernández ◽  
...  

Abstract. Remote sensing measurements of aerosols using depolarization Raman lidar systems from four EARLINET (European Aerosol Research Lidar Network) stations are used for a comprehensive analysis of Saharan dust events over the Mediterranean basin in the period 2014–2017. In this period, 51 dust events regarding the geometrical, optical and microphysical properties of dust were selected, classified and assessed according to their radiative forcing effect on the atmosphere. From west to east, the stations of Granada, Potenza, Athens and Limassol were selected as representative Mediterranean cities regularly affected by Saharan dust intrusions. Emphasis was given on lidar measurements in the visible (532 nm) and specifically on the consistency of the particle linear depolarization ratio (δp532), the extinction-to-backscatter lidar ratio (LR532) and the aerosol optical thickness (AOT532) within the observed dust layers. We found mean δp532 values of 0.24±0.05, 0.26±0.06, 0.28±0.05 and 0.28±0.04, mean LR532 values of 52±8, 51±9, 52±9 and 49±6 sr and mean AOT532 values of 0.40±0.31, 0.11±0.07, 0.12±0.10 and 0.32±0.17, for Granada, Potenza, Athens and Limassol, respectively. The mean layer thickness values were found to range from ∼ 1700 to ∼ 3400 m a.s.l. Additionally, based also on a previous aerosol type classification scheme provided by airborne High Spectral Resolution Lidar (HSRL) observations and on air mass backward trajectory analysis, a clustering analysis was performed in order to identify the mixing state of the dusty layers over the studied area. Furthermore, a synergy of lidar measurements and modeling was used to analyze the solar and thermal radiative forcing of airborne dust in detail. In total, a cooling behavior in the solar range and a significantly lower heating behavior in the thermal range was estimated. Depending on the dust optical and geometrical properties, the load intensity and the solar zenith angle (SZA), the estimated solar radiative forcing values range from −59 to −22 W m−2 at the surface and from −24 to −1 W m−2 at the top of the atmosphere (TOA). Similarly, in the thermal spectral range these values range from +2 to +4 W m−2 for the surface and from +1 to +3 W m−2 for the TOA. Finally, the radiative forcing seems to be inversely proportional to the dust mixing ratio, since higher absolute values are estimated for less mixed dust layers.


Sign in / Sign up

Export Citation Format

Share Document