scholarly journals Communication network structure parameters and new knowledge generation capabilities in companies engaged in industry control system engineering projects

2016 ◽  
Vol 6 ◽  
pp. 03017
Author(s):  
Sergei Titov ◽  
Sergei Suetin ◽  
Natalya Titov ◽  
Sergei Nikitin ◽  
Nikolai Malyshkin
2013 ◽  
Vol 58 (3) ◽  
pp. 871-875
Author(s):  
A. Herberg

Abstract This article outlines a methodology of modeling self-induced vibrations that occur in the course of machining of metal objects, i.e. when shaping casting patterns on CNC machining centers. The modeling process presented here is based on an algorithm that makes use of local model fuzzy-neural networks. The algorithm falls back on the advantages of fuzzy systems with Takagi-Sugeno-Kanga (TSK) consequences and neural networks with auxiliary modules that help optimize and shorten the time needed to identify the best possible network structure. The modeling of self-induced vibrations allows analyzing how the vibrations come into being. This in turn makes it possible to develop effective ways of eliminating these vibrations and, ultimately, designing a practical control system that would dispose of the vibrations altogether.


2011 ◽  
Vol 486 ◽  
pp. 25-28
Author(s):  
Zhi Peng Li ◽  
Dong Sheng Li

A picking and steering adjustment system for blueberry harvesters has been developed. In this paper, the main hardware and working principles of the system is introduced first, then the application of an ant colony simplification algorithm in the system development is presented. Information of virtual modeling the blueberry plant images and fruit distributions is obtained through the control system which is used as input for the ant colony simplification algorithm calculation. Then results are translated into real-time travelling path planning instructions for the blueberry harvester. The research provided technological and new knowledge support for future investigations into intelligent travelling path selection, thus playing an important role in mechanization and intelligent harvesting processes for blueberry harvesters.


2014 ◽  
Vol 945-949 ◽  
pp. 2680-2684
Author(s):  
Ai Qin Huang ◽  
Yong Wang

Direct drive volume control (DDVC) electro-hydraulic servo system has many advantages compared to the valve control system. However, its application scopes were restricted by its poor dynamic performance. To study the reason for the low dynamic response, mechanical model of DDVC electro-hydraulic servo system is established. Structure parameters influencing the dynamic performance are analyzed. To optimize the structure parameters, the methodology of orthogonal experiment is presented. The selection of factors and levels of the experiment and the choice of the evaluation index are also revealed. The proposed methodology is carried out by simulation software and an optimal configuration is obtained. The dynamic response of the DDVC system with the optimal parameters is simulated. The results show that the dynamic performances are improved. The cross-over frequencyincreases from 0.0046 rad/s to 0.0442 rad/s, and the rise time Tr decreases from 488.6s to 47.90s.


Author(s):  
James D. Pleuss ◽  
Jessica L. Heier Stamm ◽  
Jason D. Ellis

AbstractCommunication is an integral part of emergency response, and improving the information dissemination network for crisis communication can save time, resources, and lives. In a foreign animal disease (FAD) outbreak, timeliness of detection and response are critical. An outbreak of foot-and-mouth disease, a particularly significant FAD, could cripple the agriculture economy. This research uses communication data from a FAD response exercise in Kansas to develop a reliable crisis communication network model, contributing a general method for creating an information dissemination network from empirical communication data. We then introduce a simulated annealing heuristic that identifies an alternative network structure that minimizes the time for information to reach all response participants. The resultant network structure reduces overall information transmission time by almost 90% and reveals actionable observations for improving FAD response communication. We find that not only can a crisis communication network be improved significantly, but also that the quantitative results support qualitative observations from early in the data extraction process. This paper adds original methods to the literature and opens the door for future quantitative work in the area of crisis communication and emergency response.


Sign in / Sign up

Export Citation Format

Share Document