scholarly journals Searching for optimal machine learning algorithm for network traffic classification in intrusion detection system

2018 ◽  
Vol 21 ◽  
pp. 00027
Author(s):  
Alicja Gerka

The main problem associated with the development of an effective network behaviour anomaly detection-based IDS model is the selection of the optimal network traffic classification method. This article presents the results of simulation research on the effectiveness of the use of machine learning algorithms in the network attacks detection. The research part of the work concerned finding the optimal method of network packets classification possible to implement in the intrusion detection system’s attack detection module. During the research, the performance of three machine learning algorithms (Artificial Neural Network, Support Vector Machine and Naïve Bayes Classifier) has been compared using a dataset from the KDD Cup competition. Attention was also paid to the relationship between the values of algorithm parameters and their effectiveness. The work also contains an short analysis of the state of cybersecurity in Poland.

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4677
Author(s):  
Razan M. AlZoman ◽  
Mohammed J. F. Alenazi

Smart city networks involve many applications that impose specific Quality of Service (QoS) requirements, thus representing a challenging scenario for network management. Solutions aiming to guarantee QoS support have not been deployed in large-scale networks. Traffic classification is a mechanism used to manage different aspects, including QoS requirements. However, conventional traffic classification methods, such as the port-based method, are inefficient because of their inability to handle dynamic port allocation and encryption. Traffic classification using machine learning has gained research interest as an alternative method to achieve high performance. In fact, machine learning embeds intelligence into network functions, thus improving network management. In this study, we apply machine learning algorithms to predict network traffic classification. We apply four supervised learning algorithms: support vector machine, random forest, k-nearest neighbors, and decision tree. We also apply a port-based method of traffic classification based on applications’ popular assigned port numbers. Then, we compare the results of this method to those obtained from the machine learning algorithms. The evaluation results indicate that the decision tree algorithm provides the highest average accuracy among the evaluated algorithms, at 99.18%. Moreover, network traffic classification using machine learning provides more accurate results and higher performance than the port-based method.


2020 ◽  
Vol 32 (6) ◽  
pp. 137-154
Author(s):  
Aleksandr Igorevich Getman ◽  
Maria Kirillovna Ikonnikova

This survey is dedicated to the task of network traffic classification, particularly to the use of machine learning algorithms in this task. The survey begins with the description of the task, its variations and possible uses in real-world problems. It then proceeds to the description of the methods used historically to solve this task, their limitations and evolution of traffic making machine learning the main way to solve the problem. Then the most popular machine learning algorithms used in this task are described, with the examples of research papers, providing the insight into their advantages and disadvantages in relation to this field. The task of feature selection is discussed, followed by the more global problem of acquiring the suitable dataset to use in the research; some examples of such popular datasets and their descriptions are provided. The paper concludes with the outline of the current problems in this research area to be solved.


Sign in / Sign up

Export Citation Format

Share Document