scholarly journals Design of Control Law of Post Stall Maneuver under Unsteady Aerodynamics Based on Improved Dynamic Inverse Method

Author(s):  
Yongxi Lyu ◽  
Weiguo Zhang ◽  
Jingping Shi ◽  
Xiaobo Qu ◽  
Huakun Chen

In this paper, a practical improved dynamic inverse control method is proposed to solve the large control error and control hysteresis of post stall maneuver under unsteady aerodynamics. Firstly, depending on the wind tunnel experimental data of the advanced fighter aircraft model under biaxial coupled large oscillation, an accurate unsteady aerodynamic model is established by using the improved extreme learning machine (ELM) method. Secondly, in terms of the time scale separation, the control error caused by unsteady aerodynamic is reduced by adding integral in the fast loop, and the control delay caused by unsteady aerodynamic is eliminated by applying the lag correction link in the slower loop. The deflections of conventional aerodynamic surface and thrust vector are allocated by the daisy chain method. Finally, the formula of the reduced frequency, which is the key factor in the unsteady aerodynamic modelling process, is derived by analyzing the wind tunnel data. The effectiveness of the present method for the scaled model is verified by herbst post stall maneuver. The present work provides a practical and reliable way for the flight test of post stall maneuver.

Author(s):  
Fei Cen ◽  
Qing Li ◽  
Zhitao Liu ◽  
Lei Zhang ◽  
Yong Jiang

Loss-of-control has become the largest fatal accident category for worldwide commercial jet accidents, and any initiative aimed at preventing such events requires an understanding of the fundamental aircraft behavior, especially the flight dynamics at post-stall region at which loss-of-control usually occurred. A series of low-speed static and dynamic wind tunnel tests of the Common Research Model over a large angle of attack/sideslip envelope was conducted and a non-linear aerodynamic model was developed. The bifurcation analysis, complemented by time-history simulation was used to understand the post-stall flight dynamics and the numerical analysis results were preliminary validated by wind tunnel virtual flight test. Several representative post-stall behaviors for the transport aircraft have been identified, including departure, periodic oscillation, post-stall gyration and steep spiral, etc. Furthermore, the predicted periodic oscillation in pitch motion has been perfectly duplicated in wind tunnel virtual flight test. The approach used in this work shows a promising way to uncover the flight dynamics of transport aircraft at extreme and loss-of-control flight conditions, as well as to apply to nonlinear unsteady aerodynamics modeling and validation, flight accident investigation, advanced flight control law design or studying initiative for loss-of-control prevention or mitigation.


1992 ◽  
Vol 114 (2) ◽  
pp. 119-124 ◽  
Author(s):  
C. P. Butterfield ◽  
George Scott ◽  
Walt Musial

Horizontal axis wind turbine (HAWT) performance is usually predicted by using wind tunnel airfoil performance data in a blade element momentum theory analysis. This analysis assumes that the rotating blade airfoils will perform as they do in the wind tunnel. However, when stall-regulated HAWT performance is measured in full-scale operation, it is common to find that peak power levels are significantly greater than those predicted. Pitch-controlled rotors experience predictable peak power levels because they do not rely on stall to regulate peak power. This has led to empirical corrections to the stall predictions. Viterna and Corrigan (1981) proposed the most popular version of this correction. But very little insight has been gained into the basic cause of this discrepancy. The National Renewable Energy Laboratory (NREL), funded by the DOE, has conducted the first phase of an experiment which is focused on understanding the basic fluid mechanics of HAWT aerodynamics. Results to date have shown that unsteady aerodynamics exist during all operating conditions and dynamic stall can exist for high yaw angle operation. Stall hysteresis occurs for even small yaw angles and delayed stall is a very persistent reality in all operating conditions. Delayed stall is indicated by a leading edge suction peak which remains attached through angles of attack (AOA) up to 30 degrees. Wind tunnel results show this peak separating from the leading edge at 18 deg AOA. The effect of this anomaly is to raise normal force coefficients and tangent force coefficients for high AOA. Increased tangent forces will directly affect HAWT performance in high wind speed operation. This report describes pressure distribution data resulting from both wind tunnel and HAWT tests. A method of bins is used to average the HAWT data which is compared to the wind tunnel data. The analysis technique and the test set-up for each test are described.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
S. Gómez-Iradi ◽  
R. Steijl ◽  
G. N. Barakos

This paper demonstrates the potential of a compressible Navier–Stokes CFD method for the analysis of horizontal axis wind turbines. The method was first validated against experimental data of the NREL/NASA-Ames Phase VI (Hand, et al., 2001, “Unsteady Aerodynamics Experiment Phase, VI: Wind Tunnel Test Configurations and Available Data Campaigns,” NREL, Technical Report No. TP-500-29955) wind-tunnel campaign at 7 m/s, 10 m/s, and 20 m/s freestreams for a nonyawed isolated rotor. Comparisons are shown for the surface pressure distributions at several stations along the blades as well as for the integrated thrust and torque values. In addition, a comparison between measurements and CFD results is shown for the local flow angle at several stations ahead of the wind turbine blades. For attached and moderately stalled flow conditions the thrust and torque predictions are fair, though improvements in the stalled flow regime are necessary to avoid overprediction of torque. Subsequently, the wind-tunnel wall effects on the blade aerodynamics, as well as the blade/tower interaction, were investigated. The selected case corresponded to 7 m/s up-wind wind turbine at 0 deg of yaw angle and a rotational speed of 72 rpm. The obtained results suggest that the present method can cope well with the flows encountered around wind turbines providing useful results for their aerodynamic performance and revealing flow details near and off the blades and tower.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Liang Zhuang ◽  
Zhang Yulin

The development of launch vehicles has led to higher slenderness ratios and higher structural efficiencies, and the traditional control methods have difficulty in meeting high-quality control requirements. In this paper, an incremental dynamic inversion control method based on deformation reconstruction is proposed to achieve high-precision attitude control of slender launch vehicles. First, the deformation parameters of a flexible rocket are obtained via fiber Bragg grating (FBG) sensors. The deformation and attitude information is introduced into the incremental dynamic inverse control loop, and an attitude control framework that can alleviate bending vibration and deformation is established. The simulation results showed that the proposed method could accurately reconstruct the shapes of flexible launch vehicles with severe vibration and deformation, which could improve the accuracy and stability of attitude control.


2016 ◽  
Vol 774 ◽  
pp. 012095
Author(s):  
T V Markova ◽  
A A Aksenov ◽  
S V Zhluktov ◽  
D V Savitsky ◽  
A D Gavrilov ◽  
...  

2013 ◽  
Vol 310 ◽  
pp. 557-559 ◽  
Author(s):  
Li Ji ◽  
Xiao Fei Lian

For a blow-off tunnel running, there is the large delay and lag issues. We build a mathematical model of the wind tunnel Mach number control by the test modeling method, then analyse the pros and cons of various control methods based on BP neural network control algorithm. Put forward genetic algorithm optimization neural network adaptive control method to solve the large inertia of the wind tunnel system, and large delay. A large number of simulation studies, run a variety of operating conditions for the wind tunnel simulation proved that the improved adaptive neural network PID control method is reasonable and effective.


Sign in / Sign up

Export Citation Format

Share Document