Numerical simulation of inertia friction welding process of GH4169 alloy

2004 ◽  
Vol 120 ◽  
pp. 681-687
Author(s):  
Zhang Liwen ◽  
Liu Chengdong ◽  
Qi Shaoan ◽  
Yu Yongsi ◽  
Zhu Wenhui ◽  
...  

Friction welding is a solid state welding technology with good quality and high automation. It has been widely used in many industry fields especially in automobile and aerospace industry. Because of the characters of less process parameters and high automation, inertia friction welding is popular in many fields. In this paper, a 2-D thermo-mechanical FEM model was developed to simulate inertia welding process. In this model, the temperature dependency of the thermal and mechanical properties of material was considered. The finite-element software MSC.Marc was used to calculate the temperature field, stress field and strain field during inertia friction welding process. The transient temperature field and the deformation of GH4169 superalloy during inertia friction welding process were predicted. The temperature filed during inertia friction welding process was measured by means of thermocouples. The calculated temperature filed is in good agreement with the experimental result.

Author(s):  
Medhat Awad El-Hadek ◽  
Mohammad S. Davoud

Inertia friction welding processes often generate substantial residual stresses due to the heterogeneous temperature distribution during the welding process. The residual stresses which are the results of incompatible elastic and plastic deformations in weldment will alter the performance of welded structures. In this study, three-dimensional (3D) finite element analysis has been performed to analyze the coupled thermo-mechanical problem of inertia friction welding of a hollow cylinder. The analyses include the effect of conduction and convection heat transfer in conjunction with the angular velocity and the thrust pressure. The results include joint deformation and a full-field view of the residual stress field and the transient temperature distribution field in the weldment. The shape of deformation matches the experimental results reported in the literature. The residual stresses in the heat-affected zone have a high magnitude but comparatively are smaller than the yield strength of the material.


2005 ◽  
Vol 6-8 ◽  
pp. 209-216 ◽  
Author(s):  
Michael F. Zäh ◽  
L. Papadakis ◽  
Sven Roeren ◽  
T. Hornfeck

During the joining process of complex body components in the automobile industry, dimensional accuracy is essential. In order to predict the behavior and to improve the geometrical quality of joined sheet metal parts during the welding and cooling process, a simulation method by means of finite elements is applied. This should be done in the early stage of the product’s life cycle to reduce process adjustments, which are time and money consuming. In recent years the simulation of welding was basically feasible by models consisting of volume elements. This way the metallurgical phase transformation, which is responsible for the behavior of the treated parts during the cooling process, can be established for a specific material. The use of volumes has a negative influence on the calculation time and it is not applicable for sheet metals. Especially, if effects from previous forming processes are to be considered. Additionally, the application of shells can meet the requirements of an analysis of the effects of welding when the metallurgical material properties are taken into account. In this paper an example of a sheet metal (DC04, former St 14) will be examined with the aid of a finite element analysis. Firstly, a transient temperature field is calculated in a thermal simulation by applying a certain method. In this calculation only the thermal properties of the material are used. Secondly, the transient temperature field is used as the initial load for the thermo-mechanical analysis. The distortion and the residual stresses of the work piece can be calculated using thermo-mechanical properties and material phase transformations.


2012 ◽  
Vol 557-559 ◽  
pp. 2274-2278
Author(s):  
Ge Wang Shuai ◽  
Ping Fang ◽  
Zheng Hua Guo

In this paper, with the ANSYS, a 2D axisymmetric coupled thermo-electro-mechanical model was developed to analyze the spot welding process(RSW) of zinc coated steels with copper strips as an insert material between electrode and workpiece. A transient temperature field obtained from a prior performed thermal–electrical simulation of RSW process is applied as nodal load on the model to simulate the stress distribution. The temperature and stress distributions in such a welding process were obtained and compared with a conventional resistance spot welding process. The results show that using the same welding process parameters, the maximum transient temperature at the electrode surface is lower than the conventional RSW process due to the use of copper strips, which helps to extend electrode lifetime. In addition, the presence of inserted copper strip increased the resistance of welding system, thus generated much more heat to form larger nugget.


2014 ◽  
Vol 898 ◽  
pp. 233-236
Author(s):  
Jin Hong Ma ◽  
Xiao Han Yao ◽  
Bin Tao ◽  
Shuo Li

Controlled cooling of H-beam after rolling, can change the microstructure consituent,improve the strength and improve the general mechanical property and service performance. According to actual product, the rational thermal boundary condition adopted, three dimensional FEM model is established. Spray cooling is used. Transient temperature field and stress field is simulated by the FEM software ANSYS/Multiphysics when H-beam is cooled. The four kinds of cooling scheme are designed. Through analysis of the relation of temperature field with stress field, the main reason of producing residual thermal stress is the section temperature difference in the cooling process of H-beam after rolling.


Author(s):  
M. B. Mohammed ◽  
C. J. Bennett ◽  
T. H. Hyde ◽  
E. J. Williams

Inertia friction welding is the process in which stored kinetic energy in a flywheel is converted to heat by relative sliding movement between surfaces of axi-symmetric components to achieve a weld in the solid-state. The work in this paper relates to the production of dual-alloy shafts for aeroengines. Frictional characteristics determine the conditions at the weld interface and these are controlled by rotational velocity and applied axial pressure. So-called representative and predictive methods have been developed to evaluate friction conditions during the process and these are discussed in this paper. Weld data for the dissimilar weld between a high strength steel and a nickel-based super-alloy were provided by Rolls-Royce and MTU Aero Engines. The finite element software package DEFORM-2D is used to develop coupled thermo-mechanical axi-symmetric models. In previous work, methods employed to evaluate the efficiency of mechanical energy utilised during a weld, a parameter of great importance for numerical analysis, are not clear. Previous predictive approaches have employed test/weld data in one way or another to obtain the interface friction coefficient. This paper proposes a formula that incorporates the value of the mechanical energy efficiency of the welding machine into the calculation of coefficient of friction for representative modelling. It also introduces a predictive approach based on sub-layer flow theory to predict frictional behaviour during the welding process that is independent of test/weld data.


2017 ◽  
Vol 48 (7) ◽  
pp. 3328-3342 ◽  
Author(s):  
O. N. Senkov ◽  
D. W. Mahaffey ◽  
D. J. Tung ◽  
W. Zhang ◽  
S. L. Semiatin

Sign in / Sign up

Export Citation Format

Share Document