Cooling Effects of H-Beam after Rolling on Thermal Stress

2014 ◽  
Vol 898 ◽  
pp. 233-236
Author(s):  
Jin Hong Ma ◽  
Xiao Han Yao ◽  
Bin Tao ◽  
Shuo Li

Controlled cooling of H-beam after rolling, can change the microstructure consituent,improve the strength and improve the general mechanical property and service performance. According to actual product, the rational thermal boundary condition adopted, three dimensional FEM model is established. Spray cooling is used. Transient temperature field and stress field is simulated by the FEM software ANSYS/Multiphysics when H-beam is cooled. The four kinds of cooling scheme are designed. Through analysis of the relation of temperature field with stress field, the main reason of producing residual thermal stress is the section temperature difference in the cooling process of H-beam after rolling.

2012 ◽  
Vol 217-219 ◽  
pp. 2226-2229
Author(s):  
Xue Jun Chen ◽  
Qi Liu

In this paper, the finite element simulation of laser drilling process has been carried out for the nickel alloy DD6. Both the transient temperature field and thermal stress field were computed via the commercial software package ANSYS. Based on the method of dimensional analysis, the dependence of various non-dimensional parameters on both fields was specified and demonstrated in graphical forms.


2012 ◽  
Vol 538-541 ◽  
pp. 1837-1842 ◽  
Author(s):  
Long Zhi Zhao ◽  
Zi Wang ◽  
Xin Yan Jiang ◽  
Jian Zhang ◽  
Ming Juan Zhao

According to the characteristics of laser melt injection, a numerical model for a simplified 3D transient temperature field in molten pool was established using FLUENT software in this paper. In the model, many factors were considered such as liquid metal turbulence, latent heat of phase transformation and material thermo physical properties depending on temperature. The results show that the model can be developed well by FLUENT software. And the results also show that the driving force of the liquid metal flow mechanism.


2005 ◽  
Vol 97 (3) ◽  
pp. 033520 ◽  
Author(s):  
Jean-Yves Degorce ◽  
Jean-Numa Gillet ◽  
François Magny ◽  
Michel Meunier

2012 ◽  
Vol 271-272 ◽  
pp. 1441-1445
Author(s):  
Qin Luo ◽  
Su Juan Zhang ◽  
Xiao Zhang

With the increasing integration of electronic products, the heat flux density is increasing. Research on the heat dissipation of the PCB attracts more attention. Temperature field of the electronic products always changes a lot, usually leading to a transient stress field in the PCB. Due to the transient temperature field and transient stress field, the PCB’s modal changed. In this paper, the temperature field and the stress field are obtained to explain the reason of the change. The influence on PCB’s modal caused by the temperature field and the stress field are analyzed, on the basis of PCB’s thermal modal analysis, which provide a reference for the PCB design and modal analysis in the future.


2021 ◽  
Vol 233 ◽  
pp. 04046
Author(s):  
Changhao Zhang ◽  
Hu Li ◽  
Jianyu Yang ◽  
Huawei Lu ◽  
Peng Su

According to the structural characteristics of thin-walled parts, a model slicing method is proposed, and its mathematical process is established. The three-dimensional transient temperature field in the process of synchronous powder feeding laser cladding is studied and verified by numerical simulation method, and the thin-walled parts formed by later experimental processing are processed by the results of numerical simulation. Using the simulation results of temperature field as the basis for optimizing the processing parameters, the forming path of thin-walled parts is programmed and optimized, and the experimental verification shows the reliability of this method.


Author(s):  
Josef Stetina ◽  
Frantisek Kavicka ◽  
Bohumil Sekanina ◽  
Jaromir Heger

Solidification and cooling of a (con)casting, with the simultaneous heating of the mold, is a case of transient spatial heat and mass transfer. This paper introduces an original and universal numerical model of solidification, cooling and heating, of a one-to-three-dimensional stationary and transient temperature field in a system comprising the casting, the mold and its surroundings. This model simulates both traditional as well as non-traditional technologies of casting conducted in foundries, metallurgical plants, forging operations, heat-treatment processes, etc. The casting process is influenced not only by the thermophysical properties (i.e. heat conductivity, the specific heat capacity and density in the solid and liquid states) of the metallic and non-metallic materials, but also by the precision with which the numerical simulation is conducted. Determining these properties is often more demanding than the actual calculation of the temperature field of the solidifying object. Since the influence of individual properties should be neither under- nor over-estimated, it is necessary to investigate them via a parametric study. It is also necessary to determine the order of these properties in terms of their importance.


Author(s):  
Zhibing Lu ◽  
Xuedong Chen ◽  
Zhichao Fan ◽  
Jie Dong ◽  
Jinhua Zhu

Coke drum is typical industrial equipment which experiences complex thermal and mechanical cyclic load during its operation, and the thermal stress which is produced by the drastic change of temperature is the main cause of the cracking failure of coke drum. This paper aims at coke drum with 1.25Cr–0.5Mo steel, and is based on iterative algorithm. Then we simulate the process of liquid medium climbing the inner surface of coke drum in the stages of oil filling and water quenching with dynamic thermal boundary, and carry out the numerical calculation of transient temperature field of coke drum in main process stages for one operating cycle. After the comparison of simulated temperature values with the measured temperature data at several locations on the outer surface of coke drum, the appropriate equivalent coefficients of convective heat transfer will be obtained. The variation rules of transient temperature field for the key parts of coke drum are discussed. Based on the simulation results of temperature field, the thermal-structure coupling analysis of coke drum is carried out, and the variation characteristics of thermal stress on coke drum are studied later.


Sign in / Sign up

Export Citation Format

Share Document