NIOBIUM-3-TIN INTERNALLY COOLED CABLED SUPERCONDUCTOR ( ICCS) TECHNOLOGY I I

1984 ◽  
Vol 45 (C1) ◽  
pp. C1-599-C1-602
Author(s):  
M. O. Hoenig ◽  
M. M. Steeves ◽  
C. J. Cyders
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
F. G. M. Poch ◽  
C. A. Neizert ◽  
B. Geyer ◽  
O. Gemeinhardt ◽  
S. M. Niehues ◽  
...  

AbstractMultibipolar radiofrequency ablation (RFA) is an advanced ablation technique for early stage hepatocellular carcinoma and liver metastases. Vessel cooling in multibipolar RFA has not been systematically investigated. The objective of this study was to evaluate the presence of perivascular vital cells within the ablation zone after multibipolar RFA. Multibipolar RFA were performed in domestic pigs in vivo. Three internally cooled bipolar RFA applicators were used simultaneously. Three experimental settings were planned: (1) inter-applicator-distance: 15 mm; (2) inter-applicator-distance: 20 mm; (3) inter-applicator-distance: 20 mm with hepatic inflow occlusion (Pringle maneuver). A vitality staining was used to analyze liver cell vitality around all vessels in the ablation center with a diameter > 0.5 mm histologically. 771 vessels were identified. No vital tissue was seen around 423 out of 429 vessels (98.6%) situated within the central white zone. Vital cells could be observed around major hepatic vessels situated adjacent to the ablation center. Vessel diameter (> 3.0 mm; p < 0.05) and low vessel-to-ablation-center distance (< 0.2 mm; p < 0.05) were identified as risk factors for incomplete ablation adjacent to hepatic vessels. The vast majority of vessels, which were localized in the clinically relevant white zone, showed no vital perivascular cells, regardless of vessel diameter and vessel type. However, there was a risk of incomplete ablation around major hepatic vessels situated directly within the ablation center. A Pringle maneuver could avoid incomplete ablations.


2020 ◽  
Vol 29 (9) ◽  
pp. 1260-1276
Author(s):  
Zili Yang ◽  
Lu-An Chen ◽  
Ruiyang Tao ◽  
Ke Zhong

Liquid desiccant dehumidifiers (LDDs) can be improved by adding internal cooling. However, the addition of excessive cooling power may deteriorate the system‘s cost-efficiency, whereas the addition of insufficient cooling power leads to negligible performance improvements. The objective of this study is to determine the suitable cost-efficient cooling power range for improving the performance of internally cooled LDDs (IC-LDDs). A novel method and a set of criteria related to the moisture removal rate, cooling-power efficiency ( ηc) and coefficient of dehumidification performance from cooling power ( DCOPcooling) were proposed to determine cost-efficient cooling power. The internally cooled ultrasonic atomization liquid desiccant system (IC-UADS), together with a well-validated model based on the conservation laws of mass and energy and the sensible heat balance, was adopted to demonstrate the analysis. The results showed that, although the dehumidification performance improves with increasing cooling power, the improvement rate decreases, while ηcand DCOPcoolingdecline quickly (by 87.9%). For cost-efficient improvement, the necessary power proportion of internal cooling to the system‘s target dehumidification capacity tends to be stable, which was about 29% for the IC-UADS, and independent of the operating conditions. The results may help to determine the reasonable cooling power range for cost-efficient improvement of IC-LDDs.


2021 ◽  
Vol 235 ◽  
pp. 114017
Author(s):  
Guodong Wu ◽  
Yuhao Luo ◽  
Pengfei Bai ◽  
Huawei Wang ◽  
Ruipeng Cai ◽  
...  

Author(s):  
Michel Arnal ◽  
Christian Precht ◽  
Thomas Sprunk ◽  
Tobias Danninger ◽  
John Stokes

The present paper outlines a practical methodology for improved virtual prototyping, using as an example, the recently re-engineered, internally-cooled 1st stage blade of a 40 MW industrial gas turbine. Using the full 3-D CAD model of the blade, a CFD simulation that includes the hot gas flow around the blade, conjugate heat transfer from the fluid to the solid at the blade surface, heat conduction through the solid, and the coolant flow in the plenum is performed. The pressure losses through and heat transfer to the cooling channels inside the airfoil are captured with a 1-D code and the 1-D results are linked to the three-dimensional CFD analysis. The resultant three-dimensional temperature distribution through the blade provides the required thermal loading for the subsequent structural finite element analysis. The results of this analysis include the thermo-mechanical stress distribution, which is the basis for blade life assessment.


2009 ◽  
Vol 44 (12) ◽  
pp. 763-768 ◽  
Author(s):  
Hansjörg Rempp ◽  
Matthias Voigtländer ◽  
Stephan Clasen ◽  
Simone Kempf ◽  
Alexander Neugebauer ◽  
...  

2021 ◽  
Vol 163 ◽  
pp. 106811
Author(s):  
W.Q. Li ◽  
Z.R. Xue ◽  
H.B. Ke ◽  
H. Wan ◽  
X.G. Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document